Simultaneous allocation of renewable energy sources and custom power quality devices in electrical distribution networks using artificial rabbits optimization

IF 2.9 4区 环境科学与生态学 Q3 ENERGY & FUELS Clean Energy Pub Date : 2023-07-31 DOI:10.1093/ce/zkad019
Ranga Rao Chegudi, Balamurugan Ramadoss, Ramakoteswara Rao Alla
{"title":"Simultaneous allocation of renewable energy sources and custom power quality devices in electrical distribution networks using artificial rabbits optimization","authors":"Ranga Rao Chegudi, Balamurugan Ramadoss, Ramakoteswara Rao Alla","doi":"10.1093/ce/zkad019","DOIUrl":null,"url":null,"abstract":"Abstract This study suggests an optimal renewable energy source (RES) allocation and distribution-static synchronous compensator (D-STATCOM) and passive power filters (PPFs) for an electrical distribution network (EDN) to improve its performance and power quality (PQ). First, the latest metaheuristic artificial rabbits optimization (ARO) is used to locate and size solar photovoltaic (PV), wind turbine (WT) and D-STATCOM units. In the second stage, ratings of single-tuned PPFs and D-STATCOMs at the RESs are determined, considering non-linear loads in the network. The multi-objective function reduces power loss, improves the voltage stability index (VSI) and limits total harmonic distortion. Simulations using the IEEE 33-bus EDN compared the ARO results with those of previous studies. In the first scenario, ideally integrated D-STATCOMs, PVs and WTs reduced losses by 34.79%, 64.74% and 94.15%, respectively. VSI increases from 0.6965 to 0.7749, 0.8804 and 0.967. The optimal WT integration of the first scenario outperformed the PVs and D-STATCOMs. The second step optimizes the WTs and PQ devices for non-linear loads. WTs and D-STATCOMs reduce the maximum total harmonic distortion of the voltage waveform by 5.21% with non-linear loads to 3.23%, while WTs and PPFs reduce it to 4.39%. These scenarios demonstrate how WTs and D-STATCOMs can improve network performance and PQ. The computational efficiency of ARO is compared to that of the pathfinder algorithm, future search algorithm, butterfly optimization algorithm and coyote optimization algorithm. ARO speeds up convergence and improves solution quality and comprehension.","PeriodicalId":36703,"journal":{"name":"Clean Energy","volume":"25 1","pages":"0"},"PeriodicalIF":2.9000,"publicationDate":"2023-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Clean Energy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/ce/zkad019","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract This study suggests an optimal renewable energy source (RES) allocation and distribution-static synchronous compensator (D-STATCOM) and passive power filters (PPFs) for an electrical distribution network (EDN) to improve its performance and power quality (PQ). First, the latest metaheuristic artificial rabbits optimization (ARO) is used to locate and size solar photovoltaic (PV), wind turbine (WT) and D-STATCOM units. In the second stage, ratings of single-tuned PPFs and D-STATCOMs at the RESs are determined, considering non-linear loads in the network. The multi-objective function reduces power loss, improves the voltage stability index (VSI) and limits total harmonic distortion. Simulations using the IEEE 33-bus EDN compared the ARO results with those of previous studies. In the first scenario, ideally integrated D-STATCOMs, PVs and WTs reduced losses by 34.79%, 64.74% and 94.15%, respectively. VSI increases from 0.6965 to 0.7749, 0.8804 and 0.967. The optimal WT integration of the first scenario outperformed the PVs and D-STATCOMs. The second step optimizes the WTs and PQ devices for non-linear loads. WTs and D-STATCOMs reduce the maximum total harmonic distortion of the voltage waveform by 5.21% with non-linear loads to 3.23%, while WTs and PPFs reduce it to 4.39%. These scenarios demonstrate how WTs and D-STATCOMs can improve network performance and PQ. The computational efficiency of ARO is compared to that of the pathfinder algorithm, future search algorithm, butterfly optimization algorithm and coyote optimization algorithm. ARO speeds up convergence and improves solution quality and comprehension.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用人工兔子优化配电网中可再生能源和定制电能质量装置的同步分配
摘要:本文提出了一种优化的可再生能源(RES)分配和分配方法——静态同步补偿器(D-STATCOM)和无源电力滤波器(ppf),以提高配电网(EDN)的性能和电能质量(PQ)。首先,采用最新的元启发式人工兔子优化算法(ARO)对太阳能光伏(PV)、风力发电(WT)和D-STATCOM单元进行定位和尺寸确定。在第二阶段,考虑到网络中的非线性负载,确定单调谐ppf和d - statcom在RESs的额定值。多目标函数降低了功率损耗,提高了电压稳定指数(VSI),限制了总谐波失真。使用IEEE 33总线的EDN进行仿真,将ARO结果与先前的研究结果进行了比较。在第一种情况下,理想地集成d - statcom、pv和wt分别减少了34.79%、64.74%和94.15%的损耗。VSI从0.6965上升到0.7749、0.8804和0.967。第一种方案的最佳WT集成优于pv和d - statcom。第二步针对非线性负载优化WTs和PQ器件。在非线性负载下,WTs和d - statcom将电压波形的最大总谐波失真降低5.21%至3.23%,而WTs和ppf将其降低至4.39%。这些场景展示了wt和d - statcom如何提高网络性能和PQ。将ARO算法的计算效率与探路者算法、未来搜索算法、蝴蝶优化算法和郊狼优化算法进行了比较。ARO加快了收敛速度,提高了解决方案的质量和可理解性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Clean Energy
Clean Energy Environmental Science-Management, Monitoring, Policy and Law
CiteScore
4.00
自引率
13.00%
发文量
55
期刊最新文献
Exploring commercial water electrolyser systems: a data-based analysis of product characteristics A hybrid machine-learning model for solar irradiance forecasting An application of a genetic algorithm in co-optimization of geological CO2 storage based on artificial neural networks Optimal design of hybrid renewable-energy microgrid system: a techno–economic–environment–social–reliability perspective A hybrid solar–biogas system for post-COVID-19 rural energy access
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1