Enzyme-histochemical identification of lymphatic vessels by light and backscattered image scanning electron microscopy.

S Kato
{"title":"Enzyme-histochemical identification of lymphatic vessels by light and backscattered image scanning electron microscopy.","authors":"S Kato","doi":"10.3109/10520299009139926","DOIUrl":null,"url":null,"abstract":"<p><p>The walls of lymphatics are characterized by strong 5'-nucleotidase activity, whereas those of blood capillaries reveal significantly lower or no activity. Alkaline phosphatase activity, on the other hand, is markedly higher in blood capillaries than in lymphatic vessels. On the basis of such characteristics, lymphatics and blood capillaries were distinguished histochemically in rat stomach using 5'-nucleotidase-alkaline phosphatase double staining. The distribution and intensity of lead-demonstrated 5'-nucleotidase activity in lymphatic vessels could be determined by comparing the images of the same histochemically stained cryostat section as seen by light and backscattered image scanning electron microscopy. The specificity of the 5'-nucleotidase reaction was obtained by inhibiting nonspecific alkaline phosphatase by including L-tetramisole in the 5'-nucleotidase incubation medium. The products of the 5'-nucleotidase activity were deposited on the outer surface of the plasma membrane of the lymphatic endothelial cells.</p>","PeriodicalId":21924,"journal":{"name":"Stain technology","volume":"65 3","pages":"131-7"},"PeriodicalIF":0.0000,"publicationDate":"1990-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.3109/10520299009139926","citationCount":"37","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Stain technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3109/10520299009139926","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 37

Abstract

The walls of lymphatics are characterized by strong 5'-nucleotidase activity, whereas those of blood capillaries reveal significantly lower or no activity. Alkaline phosphatase activity, on the other hand, is markedly higher in blood capillaries than in lymphatic vessels. On the basis of such characteristics, lymphatics and blood capillaries were distinguished histochemically in rat stomach using 5'-nucleotidase-alkaline phosphatase double staining. The distribution and intensity of lead-demonstrated 5'-nucleotidase activity in lymphatic vessels could be determined by comparing the images of the same histochemically stained cryostat section as seen by light and backscattered image scanning electron microscopy. The specificity of the 5'-nucleotidase reaction was obtained by inhibiting nonspecific alkaline phosphatase by including L-tetramisole in the 5'-nucleotidase incubation medium. The products of the 5'-nucleotidase activity were deposited on the outer surface of the plasma membrane of the lymphatic endothelial cells.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
光散射扫描电镜对淋巴管的酶组织化学鉴定。
淋巴管壁具有较强的5′-核苷酸酶活性,而毛细血管壁则明显较低或没有活性。另一方面,毛细血管中的碱性磷酸酶活性明显高于淋巴管。在此基础上,采用5′-核苷酸酶-碱性磷酸酶双染色法对大鼠胃的淋巴管和毛细血管进行组织化学区分。通过比较同一组织化学染色的低温恒温器切片的光镜和背散射扫描电镜图像,可以确定淋巴管中铅显示的5′-核苷酸酶活性的分布和强度。通过在5′-核苷酸酶培养培养基中加入l -四咪唑抑制非特异性碱性磷酸酶,获得5′-核苷酸酶反应的特异性。5′-核苷酸酶活性产物沉积在淋巴内皮细胞的质膜外表面。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Effect of sodium hexanitrocobaltate (III) decomposition on its staining of intracellular potassium ions. A modified mallory-cason staining procedure for large cryosections. A simple procedure to visualize osmicated storage lipids in semithin epoxy sections of plant tissues. Standard specimens for stain calibration: application to Romanowsky-Giemsa staining. Localization of plant lipids for light microscopy using p-phenylenediamine in tissues of Arachis hypogaea L.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1