{"title":"VELOCITY AND FLOW PATTERN AROUND BOTTOM OUTLET AS REVEALED BY PARTICLE IMAGE VELOCIMETRY","authors":"Agatha Padma Laksitaningtyas","doi":"10.21660/2023.111.4036","DOIUrl":null,"url":null,"abstract":": This experimental study is to determine the velocity vector and flow contours in a reservoir with a bottom outlet. Velocity vector flow and contour characteristics are studied by making laboratory studies using acrylic models. The model combines the first pond as a constant head tank and the second pond as a reservoir with a hole at the bottom or bottom outlet. Particle Image Velocimetry (PIV) is an optical visualization qualitative and quantitative technique for measuring the velocity of a fluid by measuring the slight movement of a particle or object in a particular fluid area by observing the location of the tracer particle used in education and research detail. The PIV method relies on recording particle images and measuring object markers (tracer particles) distribution at several locations to measure instantaneous velocity and different phases, velocity fluctuations, and accelerations well in fluid flow. Brown shellac was chosen and used for tracer particles after several experiments using other seeding materials such as white shellack, glitter, and glycerine. The brown shellack is crushed manually, filtered to pass sieve 30 (0.5 mm), and retained on sieve 50 (0.3 mm). The recorded image file is then read and processed to obtain the magnitude and direction of velocity at the tracer particle locations captured in the image recording. The experiment was carried out by running the water flow from the constant head to the reservoir model by giving tracer particles of brown shellac. Experiments produce the most significant velocity around the bottom outlet is 265 cm/s or 2.65 m/s.","PeriodicalId":47135,"journal":{"name":"International Journal of GEOMATE","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of GEOMATE","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21660/2023.111.4036","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0
Abstract
: This experimental study is to determine the velocity vector and flow contours in a reservoir with a bottom outlet. Velocity vector flow and contour characteristics are studied by making laboratory studies using acrylic models. The model combines the first pond as a constant head tank and the second pond as a reservoir with a hole at the bottom or bottom outlet. Particle Image Velocimetry (PIV) is an optical visualization qualitative and quantitative technique for measuring the velocity of a fluid by measuring the slight movement of a particle or object in a particular fluid area by observing the location of the tracer particle used in education and research detail. The PIV method relies on recording particle images and measuring object markers (tracer particles) distribution at several locations to measure instantaneous velocity and different phases, velocity fluctuations, and accelerations well in fluid flow. Brown shellac was chosen and used for tracer particles after several experiments using other seeding materials such as white shellack, glitter, and glycerine. The brown shellack is crushed manually, filtered to pass sieve 30 (0.5 mm), and retained on sieve 50 (0.3 mm). The recorded image file is then read and processed to obtain the magnitude and direction of velocity at the tracer particle locations captured in the image recording. The experiment was carried out by running the water flow from the constant head to the reservoir model by giving tracer particles of brown shellac. Experiments produce the most significant velocity around the bottom outlet is 265 cm/s or 2.65 m/s.
期刊介绍:
The scope of special issues are as follows: ENGINEERING - Environmental Engineering - Chemical Engineering - Civil and Structural Engineering - Computer Software Eng. - Electrical and Electronic Eng. - Energy and Thermal Eng. - Aerospace Engineering - Agricultural Engineering - Biological Engineering and Sciences - Biological Systems Engineering - Biomedical and Genetic Engineering - Bioprocess and Food Engineering - Geotechnical Engineering - Industrial and Process Engineering - Manufacturing Engineering - Mechanical and Vehicle Eng. - Materials and Nano Eng. - Nuclear Engineering - Petroleum and Power Eng. - Forest Industry Eng. SCIENCE - Environmental Science - Chemistry and Chemical Sci. - Fisheries and Aquaculture Sciences - Astronomy and Space Sci. - Atmospheric Sciences - Botany and Biological Sciences - Genetics and Bacteriolog - Forestry Sciences - Geological Sciences - Materials Science and Mineralogy - Statistics and Mathematics - Microbiology and Medical Sciences - Meteorology and Palaeo Ecology - Pharmacology - Physics and Physical Sci. - Plant Sciences and Systems Biology - Psychology and Systems Biology - Zoology and Veterinary Sciences ENVIRONMENT - Environmental Technology - Recycle Solid Wastes - Environmental dynamics - Meteorology and Hydrology - Atmospheric and Geophysics - Physical oceanography - Bio-engineering - Environmental sustainability - Resource management - Modelling and decision support tools - Institutional development - Suspended and biological processes - Anaerobic and Process modelling - Modelling and numerical prediction - Interaction between pollutants - Water treatment residuals - Quality of drinking water - Distribution systems on potable water - Reuse of reclaimed waters