VELOCITY AND FLOW PATTERN AROUND BOTTOM OUTLET AS REVEALED BY PARTICLE IMAGE VELOCIMETRY

IF 0.9 Q4 ENGINEERING, CIVIL International Journal of GEOMATE Pub Date : 2023-11-01 DOI:10.21660/2023.111.4036
Agatha Padma Laksitaningtyas
{"title":"VELOCITY AND FLOW PATTERN AROUND BOTTOM OUTLET AS REVEALED BY PARTICLE IMAGE VELOCIMETRY","authors":"Agatha Padma Laksitaningtyas","doi":"10.21660/2023.111.4036","DOIUrl":null,"url":null,"abstract":": This experimental study is to determine the velocity vector and flow contours in a reservoir with a bottom outlet. Velocity vector flow and contour characteristics are studied by making laboratory studies using acrylic models. The model combines the first pond as a constant head tank and the second pond as a reservoir with a hole at the bottom or bottom outlet. Particle Image Velocimetry (PIV) is an optical visualization qualitative and quantitative technique for measuring the velocity of a fluid by measuring the slight movement of a particle or object in a particular fluid area by observing the location of the tracer particle used in education and research detail. The PIV method relies on recording particle images and measuring object markers (tracer particles) distribution at several locations to measure instantaneous velocity and different phases, velocity fluctuations, and accelerations well in fluid flow. Brown shellac was chosen and used for tracer particles after several experiments using other seeding materials such as white shellack, glitter, and glycerine. The brown shellack is crushed manually, filtered to pass sieve 30 (0.5 mm), and retained on sieve 50 (0.3 mm). The recorded image file is then read and processed to obtain the magnitude and direction of velocity at the tracer particle locations captured in the image recording. The experiment was carried out by running the water flow from the constant head to the reservoir model by giving tracer particles of brown shellac. Experiments produce the most significant velocity around the bottom outlet is 265 cm/s or 2.65 m/s.","PeriodicalId":47135,"journal":{"name":"International Journal of GEOMATE","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of GEOMATE","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21660/2023.111.4036","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0

Abstract

: This experimental study is to determine the velocity vector and flow contours in a reservoir with a bottom outlet. Velocity vector flow and contour characteristics are studied by making laboratory studies using acrylic models. The model combines the first pond as a constant head tank and the second pond as a reservoir with a hole at the bottom or bottom outlet. Particle Image Velocimetry (PIV) is an optical visualization qualitative and quantitative technique for measuring the velocity of a fluid by measuring the slight movement of a particle or object in a particular fluid area by observing the location of the tracer particle used in education and research detail. The PIV method relies on recording particle images and measuring object markers (tracer particles) distribution at several locations to measure instantaneous velocity and different phases, velocity fluctuations, and accelerations well in fluid flow. Brown shellac was chosen and used for tracer particles after several experiments using other seeding materials such as white shellack, glitter, and glycerine. The brown shellack is crushed manually, filtered to pass sieve 30 (0.5 mm), and retained on sieve 50 (0.3 mm). The recorded image file is then read and processed to obtain the magnitude and direction of velocity at the tracer particle locations captured in the image recording. The experiment was carried out by running the water flow from the constant head to the reservoir model by giving tracer particles of brown shellac. Experiments produce the most significant velocity around the bottom outlet is 265 cm/s or 2.65 m/s.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
粒子图像测速显示底部出口周围的速度和流态
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
International Journal of GEOMATE
International Journal of GEOMATE ENGINEERING, CIVIL-
CiteScore
1.90
自引率
28.60%
发文量
125
期刊介绍: The scope of special issues are as follows: ENGINEERING - Environmental Engineering - Chemical Engineering - Civil and Structural Engineering - Computer Software Eng. - Electrical and Electronic Eng. - Energy and Thermal Eng. - Aerospace Engineering - Agricultural Engineering - Biological Engineering and Sciences - Biological Systems Engineering - Biomedical and Genetic Engineering - Bioprocess and Food Engineering - Geotechnical Engineering - Industrial and Process Engineering - Manufacturing Engineering - Mechanical and Vehicle Eng. - Materials and Nano Eng. - Nuclear Engineering - Petroleum and Power Eng. - Forest Industry Eng. SCIENCE - Environmental Science - Chemistry and Chemical Sci. - Fisheries and Aquaculture Sciences - Astronomy and Space Sci. - Atmospheric Sciences - Botany and Biological Sciences - Genetics and Bacteriolog - Forestry Sciences - Geological Sciences - Materials Science and Mineralogy - Statistics and Mathematics - Microbiology and Medical Sciences - Meteorology and Palaeo Ecology - Pharmacology - Physics and Physical Sci. - Plant Sciences and Systems Biology - Psychology and Systems Biology - Zoology and Veterinary Sciences ENVIRONMENT - Environmental Technology - Recycle Solid Wastes - Environmental dynamics - Meteorology and Hydrology - Atmospheric and Geophysics - Physical oceanography - Bio-engineering - Environmental sustainability - Resource management - Modelling and decision support tools - Institutional development - Suspended and biological processes - Anaerobic and Process modelling - Modelling and numerical prediction - Interaction between pollutants - Water treatment residuals - Quality of drinking water - Distribution systems on potable water - Reuse of reclaimed waters
期刊最新文献
STUDY ON EXPERIMENTAL BEHAVIOUR OF CONCRETE WITH TOOTHBRUSH PLASTIC WASTE AS COARSE AGGREGATE ADSORPTION PROPERTIES OF HYDROXYAPATITE PRODUCED FROM FISH BONES FOR FLUORINE THE POTENTIAL OF BEMBAN FIBER AS RAW MATERIAL OF GEOPOLYMER NEW PREDICTION MODEL OF BLAST-INDUCED PPV BASED ON EMPIRICAL APPROACH IN SEDIMENTARY ROCK NEURAL NETWORK APPLICATION FOR FINE-BLANKED EDGE QUALITY IN ROLLED STEEL SHEETS
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1