{"title":"The Seismic Record of Wind in Alaska","authors":"Cade A. Quigley, Michael E. West","doi":"10.1785/0120230097","DOIUrl":null,"url":null,"abstract":"ABSTRACT Seismic data contains a continuous record of wind influenced by different factors across the frequency spectrum. To assess the influences of wind on ground motion, we use colocated wind and seismic data from 110 stations in the Alaska component of the EarthScope Transportable Array. We compare seismic probability power spectral densities and wind speed and direction during 2018 to develop a quantitative measure of the seismic sensitivity to wind. We observe a pronounced increase in seismic energy as a function of wind speed for almost all stations. At frequencies below the microseism band, our observations agree with previous authors in finding that sensor emplacement and ground materials are important, and that much of the wind influence likely comes from associated changes in barometric pressure. Wind has the least influence in the microseism band, but that is only because its contribution to noise is much smaller than the ubiquitous microseism background. At frequencies above the microseism band, we find that wind sensitivity is correlated with land cover type, increasing with vegetation height. This sensitivity varies seasonally, which we attribute to snow insulation, the burial of vegetation and objects around the station, and potentially the role of frozen ground. Wind direction also manifests in seismic data, which we attribute to turbulent air on the lee side of station huts coupling with the ground and the seismometer borehole cap. We find some dependence on bedrock type, with a greater seismic response in unconsolidated sediment. These results provide guidance on site selection and construction, and make it possible to forecast seismic network performance under different wind conditions. When we examine the factors at work in a warming climate, we find reason to anticipate increasing seismic noise from wind in the Arctic over the decades to come.","PeriodicalId":9444,"journal":{"name":"Bulletin of the Seismological Society of America","volume":"21 4","pages":"0"},"PeriodicalIF":2.6000,"publicationDate":"2023-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the Seismological Society of America","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1785/0120230097","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
ABSTRACT Seismic data contains a continuous record of wind influenced by different factors across the frequency spectrum. To assess the influences of wind on ground motion, we use colocated wind and seismic data from 110 stations in the Alaska component of the EarthScope Transportable Array. We compare seismic probability power spectral densities and wind speed and direction during 2018 to develop a quantitative measure of the seismic sensitivity to wind. We observe a pronounced increase in seismic energy as a function of wind speed for almost all stations. At frequencies below the microseism band, our observations agree with previous authors in finding that sensor emplacement and ground materials are important, and that much of the wind influence likely comes from associated changes in barometric pressure. Wind has the least influence in the microseism band, but that is only because its contribution to noise is much smaller than the ubiquitous microseism background. At frequencies above the microseism band, we find that wind sensitivity is correlated with land cover type, increasing with vegetation height. This sensitivity varies seasonally, which we attribute to snow insulation, the burial of vegetation and objects around the station, and potentially the role of frozen ground. Wind direction also manifests in seismic data, which we attribute to turbulent air on the lee side of station huts coupling with the ground and the seismometer borehole cap. We find some dependence on bedrock type, with a greater seismic response in unconsolidated sediment. These results provide guidance on site selection and construction, and make it possible to forecast seismic network performance under different wind conditions. When we examine the factors at work in a warming climate, we find reason to anticipate increasing seismic noise from wind in the Arctic over the decades to come.
期刊介绍:
The Bulletin of the Seismological Society of America, commonly referred to as BSSA, (ISSN 0037-1106) is the premier journal of advanced research in earthquake seismology and related disciplines. It first appeared in 1911 and became a bimonthly in 1963. Each issue is composed of scientific papers on the various aspects of seismology, including investigation of specific earthquakes, theoretical and observational studies of seismic waves, inverse methods for determining the structure of the Earth or the dynamics of the earthquake source, seismometry, earthquake hazard and risk estimation, seismotectonics, and earthquake engineering. Special issues focus on important earthquakes or rapidly changing topics in seismology. BSSA is published by the Seismological Society of America.