{"title":"Creep rupture data assessment – new uncertain challenges require new uncertain answers","authors":"M. Schwienheer, F. Kolzow","doi":"10.1080/09603409.2023.2268334","DOIUrl":null,"url":null,"abstract":"ABSTRACTFor the service life calculation of high-temperature components the knowledge of the creep behaviour of the materials used remain essential. Over decades, many methods have been developed for extrapolating creep rupture strengths. The challenge with these Creep Rupture Data Assessments (CRDAs), however, always remains evaluating the predictive accuracy of creep life. New computer-aided calculation methods allow the use of extensive data on the casts and other experimental data, as well as the application of probabilistic methods. Within the ECCC, software tools are being developed that both leverage the capabilities of new powerful computer-aided computational methods and allow for simultaneous assessment with post-assessment testing in accordance with ECCC recommendations. The authors would like to point out that despite all available tools and guidelines, the expertise and experience of the assessor is an indispensable guarantor for a reliable evaluation.KEYWORDS: Creepcreep rupture dataassessmentpost assessment testsmaximum likelihoodprobabilistic lifetime model AcknowledgmentsThe authors would like to thank the ECCC for its technical and financial support. “So long, and thanks for all the fish” [39].Disclosure statementNo potential conflict of interest was reported by the author(s).Additional informationFundingThis work was supported by the ECCC European Creep Collaborative Committee.","PeriodicalId":49877,"journal":{"name":"Materials at High Temperatures","volume":" 12","pages":"0"},"PeriodicalIF":1.0000,"publicationDate":"2023-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials at High Temperatures","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/09603409.2023.2268334","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 1
Abstract
ABSTRACTFor the service life calculation of high-temperature components the knowledge of the creep behaviour of the materials used remain essential. Over decades, many methods have been developed for extrapolating creep rupture strengths. The challenge with these Creep Rupture Data Assessments (CRDAs), however, always remains evaluating the predictive accuracy of creep life. New computer-aided calculation methods allow the use of extensive data on the casts and other experimental data, as well as the application of probabilistic methods. Within the ECCC, software tools are being developed that both leverage the capabilities of new powerful computer-aided computational methods and allow for simultaneous assessment with post-assessment testing in accordance with ECCC recommendations. The authors would like to point out that despite all available tools and guidelines, the expertise and experience of the assessor is an indispensable guarantor for a reliable evaluation.KEYWORDS: Creepcreep rupture dataassessmentpost assessment testsmaximum likelihoodprobabilistic lifetime model AcknowledgmentsThe authors would like to thank the ECCC for its technical and financial support. “So long, and thanks for all the fish” [39].Disclosure statementNo potential conflict of interest was reported by the author(s).Additional informationFundingThis work was supported by the ECCC European Creep Collaborative Committee.
期刊介绍:
Materials at High Temperatures welcomes contributions relating to high temperature applications in the energy generation, aerospace, chemical and process industries. The effects of high temperatures and extreme environments on the corrosion and oxidation, fatigue, creep, strength and wear of metallic alloys, ceramics, intermetallics, and refractory and composite materials relative to these industries are covered.
Papers on the modelling of behaviour and life prediction are also welcome, provided these are validated by experimental data and explicitly linked to actual or potential applications. Contributions addressing the needs of designers and engineers (e.g. standards and codes of practice) relative to the areas of interest of this journal also fall within the scope. The term ''high temperatures'' refers to the subsequent temperatures of application and not, for example, to those of processing itself.
Materials at High Temperatures publishes regular thematic issues on topics of current interest. Proposals for issues are welcomed; please contact one of the Editors with details.