Exponential synchronization of 2D cellular neural networks with boundary feedback

Pub Date : 2023-11-08 DOI:10.1080/07362994.2023.2260871
Leslaw Skrzypek, Chi Phan, Yuncheng You
{"title":"Exponential synchronization of 2D cellular neural networks with boundary feedback","authors":"Leslaw Skrzypek, Chi Phan, Yuncheng You","doi":"10.1080/07362994.2023.2260871","DOIUrl":null,"url":null,"abstract":"In this work we propose a new model of 2D cellular neural networks (CNN) in terms of the lattice FitzHugh-Nagumo equations with boundary feedback and prove a threshold condition for the exponential synchronization of the entire neural network through the \\emph{a priori} uniform estimates of solutions and the analysis of dissipative dynamics. The threshold to be satisfied by the gap signals between pairwise boundary cells of the network is expressed by the structural parameters and adjustable. The new result and method of this paper can also be generalized to 3D and higher dimensional FitzHugh-Nagumo type or Hindmarsh-Rose type cellular neural networks.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/07362994.2023.2260871","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this work we propose a new model of 2D cellular neural networks (CNN) in terms of the lattice FitzHugh-Nagumo equations with boundary feedback and prove a threshold condition for the exponential synchronization of the entire neural network through the \emph{a priori} uniform estimates of solutions and the analysis of dissipative dynamics. The threshold to be satisfied by the gap signals between pairwise boundary cells of the network is expressed by the structural parameters and adjustable. The new result and method of this paper can also be generalized to 3D and higher dimensional FitzHugh-Nagumo type or Hindmarsh-Rose type cellular neural networks.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
具有边界反馈的二维细胞神经网络的指数同步
本文提出了一种基于边界反馈的格子FitzHugh-Nagumo方程的二维细胞神经网络(CNN)新模型,并通过解的\emph{先验}一致估计和耗散动力学分析证明了整个神经网络指数同步的一个阈值条件。网络成对边界单元间间隙信号所满足的阈值用结构参数表示,可调。本文的新结果和方法也可以推广到三维及高维的FitzHugh-Nagumo型或Hindmarsh-Rose型细胞神经网络。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1