Individuals with pre-obesity exhibit a more asymmetrical gait pattern

Halit Selçuk, Hilal Keklicek
{"title":"Individuals with pre-obesity exhibit a more asymmetrical gait pattern","authors":"Halit Selçuk, Hilal Keklicek","doi":"10.1016/j.gaitpost.2023.07.223","DOIUrl":null,"url":null,"abstract":"Previous studies have shown that obesity impairs body biomechanics (1-3). However, no study has been found examining the gait of individuals who are not obese but have an above-normal BMI and were considered pre-obese. Does pre-obesity affect the symmetry of the angular values of the lower extremity during walking? Thirteen individuals with normal body mass index (BMI) (21.53±2.05 kg/m) and eight individuals with pre-obesity (28.52±2.21 kg/m) were recruited for the study. Participants walked at their self-paced speed for 4-5 minutes (4) on a motorized treadmill and the data of lower limb angles were collected with inertial measurement units (Xsens Technologies B.V.). Minimum, maximum, and average values of stance and swing phase of the participants for the whole series of the ankle, knee, and hip angles, as well as; the series at heel strike and foot release phase were recorded. Differences between right and left joints were calculated to examine gait symmetry. Symmetry in ankle angles was similar between groups (p>0.05). In the pre-obese group; minimum(p=0.011) and maximum (p=0.007) knee angles were more asymmetrical in the stance phase than in the normal-weight group. Also, the minimum knee angle in the swing phase was more asymmetrical (p=0.043) in the pre-obese group. In addition, it was determined that the pre-obese group exhibited more asymmetrical knee angles at heel strike (p=0.032) and foot release (p=0.017). The maximum hip angle of the pre-obese group was more asymmetrical in the stance phase (p=0.003) and swing phase (p= 0.006). Also, in the heel strike, the hip angle (p=0.009) was found to be more asymmetrical than the normal-weight group. No difference was observed between the groups for all other measurements (p>0.05). The results of the study showed that individuals with pre-obesity level BMI exhibited a more asymmetrical gait pattern in the proximal joints during walking. It was observed that the increase in BMI negatively affected gait even if below the level of obesity.","PeriodicalId":94018,"journal":{"name":"Gait & posture","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Gait & posture","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.gaitpost.2023.07.223","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Previous studies have shown that obesity impairs body biomechanics (1-3). However, no study has been found examining the gait of individuals who are not obese but have an above-normal BMI and were considered pre-obese. Does pre-obesity affect the symmetry of the angular values of the lower extremity during walking? Thirteen individuals with normal body mass index (BMI) (21.53±2.05 kg/m) and eight individuals with pre-obesity (28.52±2.21 kg/m) were recruited for the study. Participants walked at their self-paced speed for 4-5 minutes (4) on a motorized treadmill and the data of lower limb angles were collected with inertial measurement units (Xsens Technologies B.V.). Minimum, maximum, and average values of stance and swing phase of the participants for the whole series of the ankle, knee, and hip angles, as well as; the series at heel strike and foot release phase were recorded. Differences between right and left joints were calculated to examine gait symmetry. Symmetry in ankle angles was similar between groups (p>0.05). In the pre-obese group; minimum(p=0.011) and maximum (p=0.007) knee angles were more asymmetrical in the stance phase than in the normal-weight group. Also, the minimum knee angle in the swing phase was more asymmetrical (p=0.043) in the pre-obese group. In addition, it was determined that the pre-obese group exhibited more asymmetrical knee angles at heel strike (p=0.032) and foot release (p=0.017). The maximum hip angle of the pre-obese group was more asymmetrical in the stance phase (p=0.003) and swing phase (p= 0.006). Also, in the heel strike, the hip angle (p=0.009) was found to be more asymmetrical than the normal-weight group. No difference was observed between the groups for all other measurements (p>0.05). The results of the study showed that individuals with pre-obesity level BMI exhibited a more asymmetrical gait pattern in the proximal joints during walking. It was observed that the increase in BMI negatively affected gait even if below the level of obesity.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
肥胖前期的个体表现出更不对称的步态模式
先前的研究表明,肥胖会损害身体的生物力学(1-3)。然而,目前还没有研究发现对体重指数高于正常水平的非肥胖者的步态进行调查。肥胖前期是否影响行走时下肢角值的对称性?研究对象为体重指数(BMI)正常的13例(21.53±2.05 kg/m)和肥胖前期的8例(28.52±2.21 kg/m)。参与者在电动跑步机上以自己的速度步行4-5分钟(4),下肢角度数据由惯性测量装置(Xsens Technologies B.V.)收集。参与者在脚踝、膝盖和臀部角度的整个系列中,站姿和摇摆阶段的最小值、最大值和平均值,以及;记录了足跟撞击和足部释放阶段的一系列动作。计算左右关节之间的差异以检查步态对称性。两组间踝关节角度对称性比较,差异无统计学意义(p < 0.05)。在肥胖前组;站立阶段最小(p=0.011)和最大(p=0.007)膝关节角度比正常体重组更不对称。此外,肥胖前组在摇摆阶段的最小膝关节角度更不对称(p=0.043)。此外,确定肥胖前组在脚跟撞击(p=0.032)和足部释放(p=0.017)时表现出更多的不对称膝关节角度。肥胖前组髋部最大角度在站立阶段(p=0.003)和摇摆阶段(p= 0.006)更为不对称。此外,在脚跟撞击时,发现臀部角度(p=0.009)比正常体重组更不对称。各组间其他指标均无差异(p < 0.05)。研究结果表明,肥胖前BMI水平的个体在行走时近端关节表现出更不对称的步态模式。据观察,即使低于肥胖水平,BMI的增加也会对步态产生负面影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Influence of medial longitudinal arch flexibility on lower limb joint coupling coordination and gait impulse. Mechanisms of gait speed changes in middle-aged adults: Simultaneous analysis of magnitude and temporal effects. The effects of cognitive-motor interference on walking performance in adolescents with low balance. How reliable are femoropelvic kinematics during deep squats? The influence of subject-specific skeletal modelling on measurement variability. Proprioceptive-perception threshold is impaired in cerebral palsy and is associated with worse balance performance
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1