Design of cushioned footwear for children with obesity based on gait dynamics and motion simulation

Yihong Zhao, Shiyang Yan, Ruoyi Li, Luming Yang, Bi Shi
{"title":"Design of cushioned footwear for children with obesity based on gait dynamics and motion simulation","authors":"Yihong Zhao, Shiyang Yan, Ruoyi Li, Luming Yang, Bi Shi","doi":"10.1016/j.gaitpost.2023.07.276","DOIUrl":null,"url":null,"abstract":"Obesity will cause changes in foot structure and plantar pressure distribution, increasing the risk of foot pain and injury [1]. Functional footwear (outsole) is an essential way to distribute the local plantar pressure for children with obesity. However, the traditional design and research of outsoles need to go through the whole process of design, molding, production, fitting experiments, and so on, which is a long time and high-cost consumption. How to obtain the optimal design scheme of cushioned footwear for children with obesity through finite element analysis? Based on the database of foot morphology of children with obesity, a 3D outsole model was established, and the arch height of the outsole was set as 30%, 60%, and 100% of the arch height of children with obesity. Based on the anthropometric data, biomechanical data, and CT imaging data of children with obesity, a biomechanical simulation model of the lower limb musculoskeletal system and a finite element model of the foot were established. To verify the validity of the finite element model, the simulation results of the maximum principal stress of children with obesity during walking were compared with the actual measured data.The structure of the outsole is preliminarily constructed in Solidworks. The arch height (30%, 60%, and 100%) of the outsole was set to simulate the support at the arch. The foot-outsole-ground structure was assembled, and the pressure on the foot-shoe interface was simulated in ANSYS Workbench, to explore the dispersion effect of different arch heights. After obtaining the best design scheme, the actual relief effect of the outsoles was tested through the try-on trials. The simulation results showed that the 60% arch height support could effectively achieve the dispersion of plantar pressure in the plantar toe area and heel area. The try-on results showed that, when wearing the cushioned footwear, the peak pressure in the central forefoot and heel were relieved by 36.8% and 43.8%, respectively, from176.5 kPa and 310.9 kPa to 111.6 kPa and 174.7 kPa. Fig. 1 (a) 3D model of coushioned outsole. (b) Finite element analysis and verfication results. (c) Construction and assembly of the outsole structure. (d) The finite element analysis results between foot and outsole with the 60% arch height. (e) The cushioned footwear. (f) The cushioned effects of the outsole in the try-on experiments.Download : Download high-res image (244KB)Download : Download full-size image Through finite element analysis and fitting verification test, we found that when the arch height of the outsole is 60% of the arch height of the children with obesity, the decompression function is the best, which can transfer the pressure of the front palm and heel to the arch and toe. Finite element analysis makes functional shoe development process more efficient.","PeriodicalId":94018,"journal":{"name":"Gait & posture","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Gait & posture","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.gaitpost.2023.07.276","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Obesity will cause changes in foot structure and plantar pressure distribution, increasing the risk of foot pain and injury [1]. Functional footwear (outsole) is an essential way to distribute the local plantar pressure for children with obesity. However, the traditional design and research of outsoles need to go through the whole process of design, molding, production, fitting experiments, and so on, which is a long time and high-cost consumption. How to obtain the optimal design scheme of cushioned footwear for children with obesity through finite element analysis? Based on the database of foot morphology of children with obesity, a 3D outsole model was established, and the arch height of the outsole was set as 30%, 60%, and 100% of the arch height of children with obesity. Based on the anthropometric data, biomechanical data, and CT imaging data of children with obesity, a biomechanical simulation model of the lower limb musculoskeletal system and a finite element model of the foot were established. To verify the validity of the finite element model, the simulation results of the maximum principal stress of children with obesity during walking were compared with the actual measured data.The structure of the outsole is preliminarily constructed in Solidworks. The arch height (30%, 60%, and 100%) of the outsole was set to simulate the support at the arch. The foot-outsole-ground structure was assembled, and the pressure on the foot-shoe interface was simulated in ANSYS Workbench, to explore the dispersion effect of different arch heights. After obtaining the best design scheme, the actual relief effect of the outsoles was tested through the try-on trials. The simulation results showed that the 60% arch height support could effectively achieve the dispersion of plantar pressure in the plantar toe area and heel area. The try-on results showed that, when wearing the cushioned footwear, the peak pressure in the central forefoot and heel were relieved by 36.8% and 43.8%, respectively, from176.5 kPa and 310.9 kPa to 111.6 kPa and 174.7 kPa. Fig. 1 (a) 3D model of coushioned outsole. (b) Finite element analysis and verfication results. (c) Construction and assembly of the outsole structure. (d) The finite element analysis results between foot and outsole with the 60% arch height. (e) The cushioned footwear. (f) The cushioned effects of the outsole in the try-on experiments.Download : Download high-res image (244KB)Download : Download full-size image Through finite element analysis and fitting verification test, we found that when the arch height of the outsole is 60% of the arch height of the children with obesity, the decompression function is the best, which can transfer the pressure of the front palm and heel to the arch and toe. Finite element analysis makes functional shoe development process more efficient.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于步态动力学和运动模拟的肥胖儿童减震鞋设计
肥胖会引起足部结构和足底压力分布的改变,增加足部疼痛和损伤的风险[1]。功能鞋(大底)是肥胖儿童分配足底局部压力的重要途径。但是,传统的外底设计研究需要经过设计、成型、生产、试穿实验等全过程,时间长、成本高。如何通过有限元分析得到肥胖儿童减震鞋的最佳设计方案?根据肥胖儿童足部形态数据库,建立3D大底模型,设置大底足弓高度分别为肥胖儿童足弓高度的30%、60%和100%。基于肥胖儿童的人体测量数据、生物力学数据和CT成像数据,建立了下肢肌肉骨骼系统的生物力学仿真模型和足部的有限元模型。为了验证有限元模型的有效性,将肥胖儿童行走过程中最大主应力的仿真结果与实测数据进行对比。在Solidworks中初步构建了大底的结构。设置外底的足弓高度(30%,60%和100%)来模拟足弓处的支撑。对脚-外底-地面结构进行拼装,在ANSYS Workbench中模拟脚-鞋界面上的压力,探讨不同拱高的分散效应。获得最佳设计方案后,通过试穿试验,检验了外底的实际救济效果。仿真结果表明,60%足弓高度支撑能有效实现足底压力在足趾区和足跟区分散。试穿结果表明,穿缓冲鞋后,前足中央和脚跟的峰值压力分别从176.5 kPa和310.9 kPa降低到111.6 kPa和174.7 kPa,分别减轻了36.8%和43.8%。图1 (a)衬垫外底三维模型。(b)有限元分析和验证结果。(c)外底结构的建造和装配。(d) 60%拱高时足部与大底之间的有限元分析结果。(e)有衬垫的鞋子。(f)试穿实验中大底的缓冲效果。通过有限元分析和拟合验证试验,我们发现,当大底足弓高度为肥胖儿童足弓高度的60%时,减压功能最好,可以将前掌和脚跟的压力传递到足弓和脚趾。有限元分析使功能性鞋的开发过程更加高效。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Influence of medial longitudinal arch flexibility on lower limb joint coupling coordination and gait impulse. Mechanisms of gait speed changes in middle-aged adults: Simultaneous analysis of magnitude and temporal effects. The effects of cognitive-motor interference on walking performance in adolescents with low balance. How reliable are femoropelvic kinematics during deep squats? The influence of subject-specific skeletal modelling on measurement variability. Proprioceptive-perception threshold is impaired in cerebral palsy and is associated with worse balance performance
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1