Smart GreenGrocer: Automatic Vegetable Type Classification Using the CNN Algorithm

Raden Bagus Muhammad AdryanPutra Adhy Wijaya, Delfia Nur Anrianti Putri, Dzikri Rahadian Fudholi
{"title":"Smart GreenGrocer: Automatic Vegetable Type Classification Using the CNN Algorithm","authors":"Raden Bagus Muhammad AdryanPutra Adhy Wijaya, Delfia Nur Anrianti Putri, Dzikri Rahadian Fudholi","doi":"10.22146/ijccs.82377","DOIUrl":null,"url":null,"abstract":"In the food industry, separating vegetables is done by visually trained professionals. However, because it takes plenty of time to sort a large number of different types of vegetables, human errors might arise at any time, and using human resources is not always effective. Thus, automation is needed to minimize process time and errors. Computer vision helps reduce the need for human resources by automatizing the classification. Vegetables come in various colors and shapes; thus, vegetable classification becomes a challenging multiclass classification due to intraspecies variety and interspecies similarity of these main distinguishing characteristics. Consequently, much research is made to automatically discover effective methods to group each type of vegetable using computers. To answer this challenge, we proposed a solution utilizing deep learning with a Convolutional Neural Network (CNN) to perform multi-label classification on some types of vegetables. We experimented with the modification of batch size and optimizer type. In the training process, the learning rate is 0.01, and it adapts on arrival in the local minimum for result optimization. This classification is performed on 15 types of vegetables and produces 98.1% accuracy on testing data with 25 minutes and 45 seconds of training time.","PeriodicalId":31625,"journal":{"name":"IJCCS Indonesian Journal of Computing and Cybernetics Systems","volume":"238 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IJCCS Indonesian Journal of Computing and Cybernetics Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22146/ijccs.82377","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In the food industry, separating vegetables is done by visually trained professionals. However, because it takes plenty of time to sort a large number of different types of vegetables, human errors might arise at any time, and using human resources is not always effective. Thus, automation is needed to minimize process time and errors. Computer vision helps reduce the need for human resources by automatizing the classification. Vegetables come in various colors and shapes; thus, vegetable classification becomes a challenging multiclass classification due to intraspecies variety and interspecies similarity of these main distinguishing characteristics. Consequently, much research is made to automatically discover effective methods to group each type of vegetable using computers. To answer this challenge, we proposed a solution utilizing deep learning with a Convolutional Neural Network (CNN) to perform multi-label classification on some types of vegetables. We experimented with the modification of batch size and optimizer type. In the training process, the learning rate is 0.01, and it adapts on arrival in the local minimum for result optimization. This classification is performed on 15 types of vegetables and produces 98.1% accuracy on testing data with 25 minutes and 45 seconds of training time.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
智能蔬菜商:使用CNN算法的自动蔬菜类型分类
在食品行业,分离蔬菜是由受过视觉训练的专业人员完成的。然而,由于对大量不同种类的蔬菜进行分拣需要花费大量时间,因此随时可能出现人为错误,使用人力资源并不总是有效的。因此,需要自动化来最小化处理时间和错误。计算机视觉通过自动化分类,减少了对人力资源的需求。蔬菜有各种各样的颜色和形状;因此,由于种内的多样性和种间的相似性,蔬菜分类成为一个具有挑战性的多纲分类。因此,人们进行了大量的研究,以利用计算机自动发现有效的方法来对每种蔬菜进行分组。为了应对这一挑战,我们提出了一种利用深度学习和卷积神经网络(CNN)对某些类型的蔬菜进行多标签分类的解决方案。我们对批量大小和优化器类型的修改进行了实验。在训练过程中,学习率为0.01,并在到达局部最小值时自适应进行结果优化。该分类对15种蔬菜进行了分类,在25分45秒的训练时间内,测试数据的准确率达到98.1%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
20
审稿时长
12 weeks
期刊最新文献
Identify Reviews of Pedulilindungi Applications using Topic Modeling with Latent Dirichlet Allocation Method Convolutional Long Short-Term Memory (C-LSTM) For Multi Product Prediction Optimizing ODP Device Placement on FTTH Network Using Genetic Algorithms Backward Elimination for Feature Selection on Breast Cancer Classification Using Logistic Regression and Support Vector Machine Algorithms ESSAY ANSWER CLASSIFICATION WITH SMOTE RANDOM FOREST AND ADABOOST IN AUTOMATED ESSAY SCORING
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1