Analysis of Petrophysical Parameter on Shaly Sand Reservoir by Comparing Conventional Method and Shaly Sand Method in Vulcan Subbasin, Northwest Australia
{"title":"Analysis of Petrophysical Parameter on Shaly Sand Reservoir by Comparing Conventional Method and Shaly Sand Method in Vulcan Subbasin, Northwest Australia","authors":"Ulrike Johanna, Epo Prasetya Kusumah","doi":"10.25299/jgeet.2023.8.02-2.13880","DOIUrl":null,"url":null,"abstract":"Vulcan Subbasin is an area with a lot of oil and gas exploration where is located in the Bonaparte Basin, Northwest Australia. There is some formation identified as sandstone reservoir with clay content which is usually called shaly sand based on the screening between resistivity log and density log. Clay content caused lower resistivity log readings so the shaly sand reservoir is considered as non-reservoir. To overcome this, a method besides the conventional method was applied to analyze the petrophysical parameters of shaly sand reservoir, it was shaly sand method. Petrophysical analysis is an analysis of rock physical parameters such as shale volume, porosity, and water saturation based on well log data. In this study, petrophysical analysis was carried out in the Vulcan Subbasin using 35 well log data, including gamma ray log, resistivity log, neutron log, and density log for the conventional method and shaly sand method involved Stieber equation and Thomas Stieber plot. The results obtained from this study are the comparison of petrophysical parameter values and pay summary between the conventional method and the shaly sand method, also its relation to the shale distribution type. By applying the shaly sand method, the average shale volume has decreased, the average porosity has increased, the average water saturation has increased, the average net to gross has increased, the average net thickness has increased, and the average net pay has increased. Changes in the average value were caused by laminated-dispersed shale distribution type which is influenced by diagenesis and the depositional environment of the formation.","PeriodicalId":31931,"journal":{"name":"JGEET Journal of Geoscience Engineering Environment and Technology","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"JGEET Journal of Geoscience Engineering Environment and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.25299/jgeet.2023.8.02-2.13880","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Vulcan Subbasin is an area with a lot of oil and gas exploration where is located in the Bonaparte Basin, Northwest Australia. There is some formation identified as sandstone reservoir with clay content which is usually called shaly sand based on the screening between resistivity log and density log. Clay content caused lower resistivity log readings so the shaly sand reservoir is considered as non-reservoir. To overcome this, a method besides the conventional method was applied to analyze the petrophysical parameters of shaly sand reservoir, it was shaly sand method. Petrophysical analysis is an analysis of rock physical parameters such as shale volume, porosity, and water saturation based on well log data. In this study, petrophysical analysis was carried out in the Vulcan Subbasin using 35 well log data, including gamma ray log, resistivity log, neutron log, and density log for the conventional method and shaly sand method involved Stieber equation and Thomas Stieber plot. The results obtained from this study are the comparison of petrophysical parameter values and pay summary between the conventional method and the shaly sand method, also its relation to the shale distribution type. By applying the shaly sand method, the average shale volume has decreased, the average porosity has increased, the average water saturation has increased, the average net to gross has increased, the average net thickness has increased, and the average net pay has increased. Changes in the average value were caused by laminated-dispersed shale distribution type which is influenced by diagenesis and the depositional environment of the formation.