{"title":"Effect of eco-friendly nano additive with green fuel on performance and emissions of a compression ignition engine","authors":"Sooraj Mohan, Augustine B.V. Barboza, P. Dinesha","doi":"10.1080/23311916.2023.2272351","DOIUrl":null,"url":null,"abstract":"The quest for energy efficiency systems is gaining momentum in the present-day context due to prevailing environmental and eco nomic compulsions. One of the alternatives available to meet this requirement is to modify the fuel to make it greener and more reasonable. In the present study, an attempt has been made to assess the performance and emissions of a compression ignition (CI) engine fuelled with B20 biodiesel and nano additives. Experiments have been carried out on a ssingle-cylinder CI engine using waste cooking oil-derived biodiesel, B20 and nano-sized biochar and multi-walled carbon nano tubes (MWCNTs). The nano additives were used in concentrations of 20 and 40 ppm to form four fuel variants, and the results relating to performance and emissions were compared. B20 fuel with MWCNT nanoparticles showed better brake thermal efficiency (BTE), brake-specific fuel consumption and reduced HC and carbon monoxide emissions. On the contrary, increased exhaust temperature and a subsequent increase in NOx emissions were recorded. The activated biochar nanoparticles improved the BTE of the engine with a comparatively better removal of NOx. This intricate behaviour of both the carbon nanoparticles reported in this work requires comprehensive optimization studies in the future.","PeriodicalId":10464,"journal":{"name":"Cogent Engineering","volume":"37 3","pages":"0"},"PeriodicalIF":2.1000,"publicationDate":"2023-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cogent Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/23311916.2023.2272351","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The quest for energy efficiency systems is gaining momentum in the present-day context due to prevailing environmental and eco nomic compulsions. One of the alternatives available to meet this requirement is to modify the fuel to make it greener and more reasonable. In the present study, an attempt has been made to assess the performance and emissions of a compression ignition (CI) engine fuelled with B20 biodiesel and nano additives. Experiments have been carried out on a ssingle-cylinder CI engine using waste cooking oil-derived biodiesel, B20 and nano-sized biochar and multi-walled carbon nano tubes (MWCNTs). The nano additives were used in concentrations of 20 and 40 ppm to form four fuel variants, and the results relating to performance and emissions were compared. B20 fuel with MWCNT nanoparticles showed better brake thermal efficiency (BTE), brake-specific fuel consumption and reduced HC and carbon monoxide emissions. On the contrary, increased exhaust temperature and a subsequent increase in NOx emissions were recorded. The activated biochar nanoparticles improved the BTE of the engine with a comparatively better removal of NOx. This intricate behaviour of both the carbon nanoparticles reported in this work requires comprehensive optimization studies in the future.
期刊介绍:
One of the largest, multidisciplinary open access engineering journals of peer-reviewed research, Cogent Engineering, part of the Taylor & Francis Group, covers all areas of engineering and technology, from chemical engineering to computer science, and mechanical to materials engineering. Cogent Engineering encourages interdisciplinary research and also accepts negative results, software article, replication studies and reviews.