The vertical structure of internal lee wave-driven benthic mixing hotspots

IF 2.8 2区 地球科学 Q1 OCEANOGRAPHY Journal of Physical Oceanography Pub Date : 2023-11-01 DOI:10.1175/jpo-d-22-0268.1
Ying He, Toshiyuki Hibiya
{"title":"The vertical structure of internal lee wave-driven benthic mixing hotspots","authors":"Ying He, Toshiyuki Hibiya","doi":"10.1175/jpo-d-22-0268.1","DOIUrl":null,"url":null,"abstract":"Abstract In global ocean circulation and climate models, bottom-enhanced turbulent mixing is often parameterized such that the vertical decay scale of the energy dissipation rate ζ is universally constant at 500 m. In this study, using a non-hydrostatic two-dimensional numerical model in the horizontal-vertical plane that incorporates a monochromatic sinusoidal seafloor topography and the Garrett-Munk (GM) background internal wave field, we find that ζ of the internal lee wave-driven bottom-enhanced mixing is actually variable depending on the magnitude of the steady flow U 0 , the horizontal wavenumber k H , and the height h T of the seafloor topography. When the steepness parameter ( Sp=Nh T /U 0 where N is the buoyancy frequency near the seafloor) is less than 0.3, internal lee waves propagate upward from the seafloor while interacting with the GM internal wave field to create a turbulent mixing region with ζ that extends further upward from the seafloor as U 0 increases, but is nearly independent of k H . In contrast, when Sp exceeds 0.3, inertial oscillations (IOs) not far above the seafloor are enhanced by the intermittent supply of internal lee wave energy Doppler-shifted to the near-inertial frequency, which occurs depending on the sign and magnitude of the background IO shear. The composite flow, consisting of the superposition of U 0 and the IOs, interacts with the seafloor topography to efficiently generate internal lee waves during the period centered on the time of the composite flow maximum, but their upward propagation is inhibited by the increased IO shear, creating a turbulent mixing region of small ζ .","PeriodicalId":56115,"journal":{"name":"Journal of Physical Oceanography","volume":"308 2","pages":"0"},"PeriodicalIF":2.8000,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physical Oceanography","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1175/jpo-d-22-0268.1","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OCEANOGRAPHY","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract In global ocean circulation and climate models, bottom-enhanced turbulent mixing is often parameterized such that the vertical decay scale of the energy dissipation rate ζ is universally constant at 500 m. In this study, using a non-hydrostatic two-dimensional numerical model in the horizontal-vertical plane that incorporates a monochromatic sinusoidal seafloor topography and the Garrett-Munk (GM) background internal wave field, we find that ζ of the internal lee wave-driven bottom-enhanced mixing is actually variable depending on the magnitude of the steady flow U 0 , the horizontal wavenumber k H , and the height h T of the seafloor topography. When the steepness parameter ( Sp=Nh T /U 0 where N is the buoyancy frequency near the seafloor) is less than 0.3, internal lee waves propagate upward from the seafloor while interacting with the GM internal wave field to create a turbulent mixing region with ζ that extends further upward from the seafloor as U 0 increases, but is nearly independent of k H . In contrast, when Sp exceeds 0.3, inertial oscillations (IOs) not far above the seafloor are enhanced by the intermittent supply of internal lee wave energy Doppler-shifted to the near-inertial frequency, which occurs depending on the sign and magnitude of the background IO shear. The composite flow, consisting of the superposition of U 0 and the IOs, interacts with the seafloor topography to efficiently generate internal lee waves during the period centered on the time of the composite flow maximum, but their upward propagation is inhibited by the increased IO shear, creating a turbulent mixing region of small ζ .
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
内背风波驱动底栖生物混合热点的垂直结构
在全球海洋环流和气候模式中,底部增强的湍流混合经常被参数化,使得能量耗散率ζ的垂直衰减尺度在500 m处普遍恒定。在这项研究中,使用一个包含单色正弦海底地形和Garrett-Munk (GM)背景内波场的水平-垂直平面非流体静力二维数值模型,我们发现内部背风波驱动的底部增强混合的ζ实际上是可变的,这取决于稳定流的大小U 0,水平波数k H和海底地形的高度H T。当陡度参数(Sp=Nh T / u0,其中N为海底附近的浮力频率)小于0.3时,内背风波从海底向上传播,同时与GM内波场相互作用,形成一个带有ζ的湍流混合区,随着u0的增加,ζ从海底向上延伸,但几乎与kh无关。相反,当Sp超过0.3时,内部背风波能量多普勒频移至近惯性频率的间歇性供应增强了海床上方不远的惯性振荡(IOs),这取决于背景IO切变的符号和大小。由u0和IOs叠加组成的复合流与海底地形相互作用,在复合流最大时间为中心的时段内有效产生内背风波,但其向上传播受到IO切变增加的抑制,形成一个小ζ的湍流混合区。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
2.40
自引率
20.00%
发文量
200
审稿时长
4.5 months
期刊介绍: The Journal of Physical Oceanography (JPO) (ISSN: 0022-3670; eISSN: 1520-0485) publishes research related to the physics of the ocean and to processes operating at its boundaries. Observational, theoretical, and modeling studies are all welcome, especially those that focus on elucidating specific physical processes. Papers that investigate interactions with other components of the Earth system (e.g., ocean–atmosphere, physical–biological, and physical–chemical interactions) as well as studies of other fluid systems (e.g., lakes and laboratory tanks) are also invited, as long as their focus is on understanding the ocean or its role in the Earth system.
期刊最新文献
Why is the Westward Rossby Wave Propagation from the California Coast “Too Fast”? Observations of Parametric Subharmonic Instability of Diurnal Internal Tides in the Northwest Pacific Imprint of chaos on the ocean energy cycle from an eddying North Atlantic ensemble Interpreting Negative IOD Events Based on the Transfer Routes of Wave Energy in the Upper Ocean On the Pathways of Wind-Driven Coastal Upwelling: Nonlinear Momentum Flux and Baroclinic Instability
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1