Software Reliability Prediction using Correlation Constrained Multi-Objective Evolutionary Optimization Algorithm

IF 0.8 Q4 ENGINEERING, ELECTRICAL & ELECTRONIC International Journal of Electrical and Computer Engineering Systems Pub Date : 2023-10-24 DOI:10.32985/ijeces.14.8.11
Neha Yadav, Vibhash Yadav
{"title":"Software Reliability Prediction using Correlation Constrained Multi-Objective Evolutionary Optimization Algorithm","authors":"Neha Yadav, Vibhash Yadav","doi":"10.32985/ijeces.14.8.11","DOIUrl":null,"url":null,"abstract":"Software reliability frameworks are extremely effective for estimating the probability of software failure over time. Numerous approaches for predicting software dependability were presented, but neither of those has shown to be effective. Predicting the number of software faults throughout the research and testing phases is a serious problem. As there are several software metrics such as object-oriented design metrics, public and private attributes, methods, previous bug metrics, and software change metrics. Many researchers have identified and performed predictions of software reliability on these metrics. But none of them contributed to identifying relations among these metrics and exploring the most optimal metrics. Therefore, this paper proposed a correlation- constrained multi-objective evolutionary optimization algorithm (CCMOEO) for software reliability prediction. CCMOEO is an effective optimization approach for estimating the variables of popular growth models which consists of reliability. To obtain the highest classification effectiveness, the suggested CCMOEO approach overcomes modeling uncertainties by integrating various metrics with multiple objective functions. The hypothesized models were formulated using evaluation results on five distinct datasets in this research. The prediction was evaluated on seven different machine learning algorithms i.e., linear support vector machine (LSVM), radial support vector machine (RSVM), decision tree, random forest, gradient boosting, k-nearest neighbor, and linear regression. The result analysis shows that random forest achieved better performance.","PeriodicalId":41912,"journal":{"name":"International Journal of Electrical and Computer Engineering Systems","volume":"33 11","pages":"0"},"PeriodicalIF":0.8000,"publicationDate":"2023-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Electrical and Computer Engineering Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.32985/ijeces.14.8.11","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Software reliability frameworks are extremely effective for estimating the probability of software failure over time. Numerous approaches for predicting software dependability were presented, but neither of those has shown to be effective. Predicting the number of software faults throughout the research and testing phases is a serious problem. As there are several software metrics such as object-oriented design metrics, public and private attributes, methods, previous bug metrics, and software change metrics. Many researchers have identified and performed predictions of software reliability on these metrics. But none of them contributed to identifying relations among these metrics and exploring the most optimal metrics. Therefore, this paper proposed a correlation- constrained multi-objective evolutionary optimization algorithm (CCMOEO) for software reliability prediction. CCMOEO is an effective optimization approach for estimating the variables of popular growth models which consists of reliability. To obtain the highest classification effectiveness, the suggested CCMOEO approach overcomes modeling uncertainties by integrating various metrics with multiple objective functions. The hypothesized models were formulated using evaluation results on five distinct datasets in this research. The prediction was evaluated on seven different machine learning algorithms i.e., linear support vector machine (LSVM), radial support vector machine (RSVM), decision tree, random forest, gradient boosting, k-nearest neighbor, and linear regression. The result analysis shows that random forest achieved better performance.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于关联约束的多目标进化优化算法的软件可靠性预测
软件可靠性框架对于估计随着时间推移软件故障的概率是非常有效的。人们提出了许多预测软件可靠性的方法,但没有一种是有效的。在整个研究和测试阶段预测软件故障的数量是一个严重的问题。因为有几个软件度量,如面向对象的设计度量、公共和私有属性、方法、以前的错误度量和软件更改度量。许多研究人员已经根据这些指标确定并执行了软件可靠性的预测。但他们都没有对识别这些指标之间的关系和探索最优指标做出贡献。为此,本文提出了一种基于关联约束的多目标进化优化算法(CCMOEO)。CCMOEO是一种有效的估计由可靠性组成的流行增长模型变量的优化方法。为了获得最高的分类效率,本文提出的CCMOEO方法通过将多个指标与多个目标函数集成来克服建模的不确定性。假设模型是根据本研究中五个不同数据集的评估结果制定的。采用线性支持向量机(LSVM)、径向支持向量机(RSVM)、决策树、随机森林、梯度增强、k近邻和线性回归等7种不同的机器学习算法对预测结果进行了评估。结果分析表明,随机森林取得了较好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
1.20
自引率
11.80%
发文量
69
期刊介绍: The International Journal of Electrical and Computer Engineering Systems publishes original research in the form of full papers, case studies, reviews and surveys. It covers theory and application of electrical and computer engineering, synergy of computer systems and computational methods with electrical and electronic systems, as well as interdisciplinary research. Power systems Renewable electricity production Power electronics Electrical drives Industrial electronics Communication systems Advanced modulation techniques RFID devices and systems Signal and data processing Image processing Multimedia systems Microelectronics Instrumentation and measurement Control systems Robotics Modeling and simulation Modern computer architectures Computer networks Embedded systems High-performance computing Engineering education Parallel and distributed computer systems Human-computer systems Intelligent systems Multi-agent and holonic systems Real-time systems Software engineering Internet and web applications and systems Applications of computer systems in engineering and related disciplines Mathematical models of engineering systems Engineering management.
期刊最新文献
A Four Slot Dual Feed and Dual Band Reconfigurable Antenna for Fixed Satellite Service Applications Improving Scientific Literature Classification: A Parameter-Efficient Transformer-Based Approach The New ADE-TLM Algorithm for Modeling Debye Medium Multi-Head CNN-based Software Development Risk Classification FOE NET: Segmentation of Fetal in Ultrasound Images Using V-NET
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1