{"title":"Knowledge injection of Datalog rules via Neural Network Structuring with KINS","authors":"Matteo Magnini, Giovanni Ciatto, Andrea Omicini","doi":"10.1093/logcom/exad037","DOIUrl":null,"url":null,"abstract":"Abstract We propose a novel method to inject symbolic knowledge in form of Datalog formulæ into neural networks (NN), called Knowledge Injection via Network Structuring (KINS). The idea behind our method is to extend NN internal structure with ad-hoc layers built out of the injected symbolic knowledge. KINS does not constrain NN to any specific architecture, neither requires logic formulæ to be ground. Moreover, it is robust w.r.t. both lack of data and imperfect/incomplete knowledge. Experiments are reported, involving multiple datasets and predictor types, to demonstrate how KINS can significantly improve the predictive performance of the neural networks it is applied to.","PeriodicalId":50162,"journal":{"name":"Journal of Logic and Computation","volume":"1 1","pages":"0"},"PeriodicalIF":0.7000,"publicationDate":"2023-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Logic and Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/logcom/exad037","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract We propose a novel method to inject symbolic knowledge in form of Datalog formulæ into neural networks (NN), called Knowledge Injection via Network Structuring (KINS). The idea behind our method is to extend NN internal structure with ad-hoc layers built out of the injected symbolic knowledge. KINS does not constrain NN to any specific architecture, neither requires logic formulæ to be ground. Moreover, it is robust w.r.t. both lack of data and imperfect/incomplete knowledge. Experiments are reported, involving multiple datasets and predictor types, to demonstrate how KINS can significantly improve the predictive performance of the neural networks it is applied to.
期刊介绍:
Logic has found application in virtually all aspects of Information Technology, from software engineering and hardware to programming and artificial intelligence. Indeed, logic, artificial intelligence and theoretical computing are influencing each other to the extent that a new interdisciplinary area of Logic and Computation is emerging.
The Journal of Logic and Computation aims to promote the growth of logic and computing, including, among others, the following areas of interest: Logical Systems, such as classical and non-classical logic, constructive logic, categorical logic, modal logic, type theory, feasible maths.... Logical issues in logic programming, knowledge-based systems and automated reasoning; logical issues in knowledge representation, such as non-monotonic reasoning and systems of knowledge and belief; logics and semantics of programming; specification and verification of programs and systems; applications of logic in hardware and VLSI, natural language, concurrent computation, planning, and databases. The bulk of the content is technical scientific papers, although letters, reviews, and discussions, as well as relevant conference reviews, are included.