{"title":"Molecular Structure-Based Prediction of Absorption Maxima of Dyes Using ANN Model","authors":"Neeraj Tomar, Geeta Rani, Vijaypal Singh Dhaka, Praveen K. Surolia, Kalpit Gupta, Eugenio Vocaturo, Ester Zumpano","doi":"10.3390/bdcc7020115","DOIUrl":null,"url":null,"abstract":"The exponentially growing energy requirements and, in turn, extensive depletion of non-restorable sources of energy are a major cause of concern. Restorable energy sources such as solar cells can be used as an alternative. However, their low efficiency is a barrier to their practical use. This provokes the research community to design efficient solar cells. Based on the study of efficacy, design feasibility, and cost of fabrication, DSSC shows supremacy over other photovoltaic solar cells. However, fabricating DSSC in a laboratory and then assessing their characteristics is a costly affair. The researchers applied techniques of computational chemistry such as Time-Dependent Density Functional Theory, and an ab initio method for defining the structure and electronic properties of dyes without synthesizing them. However, the inability of descriptors to provide an intuitive physical depiction of the effect of all parameters is a limitation of the proposed approaches. The proven potential of neural network models in data analysis, pattern recognition, and object detection motivated researchers to extend their applicability for predicting the absorption maxima (λmax) of dye. The objective of this research is to develop an ANN-based QSPR model for correctly predicting the value of λmax for inorganic ruthenium complex dyes used in DSSC. Furthermore, it demonstrates the impact of different activation functions, optimizers, and loss functions on the prediction accuracy of λmax. Moreover, this research showcases the impact of atomic weight, types of bonds between constituents of the dye molecule, and the molecular weight of the dye molecule on the value of λmax. The experimental results proved that the value of λmax varies with changes in constituent atoms and types of bonds in a dye molecule. In addition, the model minimizes the difference in the experimental and calculated values of absorption maxima. The comparison with the existing models proved the dominance of the proposed model.","PeriodicalId":36397,"journal":{"name":"Big Data and Cognitive Computing","volume":"18 1","pages":"0"},"PeriodicalIF":3.7000,"publicationDate":"2023-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Big Data and Cognitive Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/bdcc7020115","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
The exponentially growing energy requirements and, in turn, extensive depletion of non-restorable sources of energy are a major cause of concern. Restorable energy sources such as solar cells can be used as an alternative. However, their low efficiency is a barrier to their practical use. This provokes the research community to design efficient solar cells. Based on the study of efficacy, design feasibility, and cost of fabrication, DSSC shows supremacy over other photovoltaic solar cells. However, fabricating DSSC in a laboratory and then assessing their characteristics is a costly affair. The researchers applied techniques of computational chemistry such as Time-Dependent Density Functional Theory, and an ab initio method for defining the structure and electronic properties of dyes without synthesizing them. However, the inability of descriptors to provide an intuitive physical depiction of the effect of all parameters is a limitation of the proposed approaches. The proven potential of neural network models in data analysis, pattern recognition, and object detection motivated researchers to extend their applicability for predicting the absorption maxima (λmax) of dye. The objective of this research is to develop an ANN-based QSPR model for correctly predicting the value of λmax for inorganic ruthenium complex dyes used in DSSC. Furthermore, it demonstrates the impact of different activation functions, optimizers, and loss functions on the prediction accuracy of λmax. Moreover, this research showcases the impact of atomic weight, types of bonds between constituents of the dye molecule, and the molecular weight of the dye molecule on the value of λmax. The experimental results proved that the value of λmax varies with changes in constituent atoms and types of bonds in a dye molecule. In addition, the model minimizes the difference in the experimental and calculated values of absorption maxima. The comparison with the existing models proved the dominance of the proposed model.