{"title":"Effect of thermal environment on the free vibration of functionally graded carbon nanotubes cylindrical-conical shell","authors":"Mohammad Javad Babaei, Ali Asghar Jafari","doi":"10.1080/01495739.2023.2271525","DOIUrl":null,"url":null,"abstract":"AbstractThis research analyzes the influence of temperature changes on the vibration of single-walled carbon nanotubes (SW-CNTs) composite joined conical-cylindrical shells. The governing dynamic equations of temperature-dependent CNTs with initial thermomechanical stresses are established using the Love shell assumptions and classical shell theory. The initial thermomechanical stresses are derived from the linear membrane approach method. Two possibilities are assumed for the calculation of temperature change: a uniform temperature distribution and steady-state heat transfer by conduction through the thickness of the shell. The initial thermomechanical stresses are determined using the linear membrane approach. The generalized differential quadrature (GDQ) method is used to solve the equations after combining it with continuity conditions between the conical part and the cylindrical part and various boundary conditions. After validating the natural frequency and the different types of temperature distribution with the studies of other researchers, the effects of semi vortex of the cone, the volume fraction, and the type of distribution on the temperature rise are given as the results. The type of temperature distribution has the greatest influence among the parameters.Keywords: GDQ methodjoint shelltemperature effectthermal conductionvibration Disclosure statementAll authors certify that they have no affiliations with or involvement in any organization or entity with any financial interest or non-financial interest in the subject matter or materials discussed in this manuscript.","PeriodicalId":54759,"journal":{"name":"Journal of Thermal Stresses","volume":null,"pages":null},"PeriodicalIF":2.6000,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Thermal Stresses","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/01495739.2023.2271525","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0
Abstract
AbstractThis research analyzes the influence of temperature changes on the vibration of single-walled carbon nanotubes (SW-CNTs) composite joined conical-cylindrical shells. The governing dynamic equations of temperature-dependent CNTs with initial thermomechanical stresses are established using the Love shell assumptions and classical shell theory. The initial thermomechanical stresses are derived from the linear membrane approach method. Two possibilities are assumed for the calculation of temperature change: a uniform temperature distribution and steady-state heat transfer by conduction through the thickness of the shell. The initial thermomechanical stresses are determined using the linear membrane approach. The generalized differential quadrature (GDQ) method is used to solve the equations after combining it with continuity conditions between the conical part and the cylindrical part and various boundary conditions. After validating the natural frequency and the different types of temperature distribution with the studies of other researchers, the effects of semi vortex of the cone, the volume fraction, and the type of distribution on the temperature rise are given as the results. The type of temperature distribution has the greatest influence among the parameters.Keywords: GDQ methodjoint shelltemperature effectthermal conductionvibration Disclosure statementAll authors certify that they have no affiliations with or involvement in any organization or entity with any financial interest or non-financial interest in the subject matter or materials discussed in this manuscript.
期刊介绍:
The first international journal devoted exclusively to the subject, Journal of Thermal Stresses publishes refereed articles on the theoretical and industrial applications of thermal stresses. Intended as a forum for those engaged in analytic as well as experimental research, this monthly journal includes papers on mathematical and practical applications. Emphasis is placed on new developments in thermoelasticity, thermoplasticity, and theory and applications of thermal stresses. Papers on experimental methods and on numerical methods, including finite element methods, are also published.