{"title":"Intelligent Systems in Motion","authors":"Yiyi Cai, Tuanfa Qin, Yang Ou, Rui Wei","doi":"10.4018/ijswis.333056","DOIUrl":null,"url":null,"abstract":"Simultaneous localization and mapping (SLAM) serves as a cornerstone in autonomous systems and has seen exponential growth in its roles, particularly in facilitating advanced path planning solutions. One emerging avenue of research that is rapidly evolving is the incorporation of multi-sensor fusion techniques to enhance SLAM-based path planning. The paper initiates with a thorough review of various sensor types and their attributes before covering a broad spectrum of both traditional and contemporary algorithms for multi-sensor fusion within SLAM. Performance evaluation metrics pertinent to SLAM and sensor fusion are explored. A special focus is laid on the interconnected roles and applications of multi-sensor fusion in SLAM-based path planning, discussing its significance in navigation scenarios as well as addressing challenges such as computational burden and real-time implementation. This paper sets the stage for future developments in creating more robust, resilient, and efficient SLAM-based path planning systems enabled by multi-sensor fusion.","PeriodicalId":54934,"journal":{"name":"International Journal on Semantic Web and Information Systems","volume":"19 7","pages":"0"},"PeriodicalIF":4.1000,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal on Semantic Web and Information Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/ijswis.333056","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Simultaneous localization and mapping (SLAM) serves as a cornerstone in autonomous systems and has seen exponential growth in its roles, particularly in facilitating advanced path planning solutions. One emerging avenue of research that is rapidly evolving is the incorporation of multi-sensor fusion techniques to enhance SLAM-based path planning. The paper initiates with a thorough review of various sensor types and their attributes before covering a broad spectrum of both traditional and contemporary algorithms for multi-sensor fusion within SLAM. Performance evaluation metrics pertinent to SLAM and sensor fusion are explored. A special focus is laid on the interconnected roles and applications of multi-sensor fusion in SLAM-based path planning, discussing its significance in navigation scenarios as well as addressing challenges such as computational burden and real-time implementation. This paper sets the stage for future developments in creating more robust, resilient, and efficient SLAM-based path planning systems enabled by multi-sensor fusion.
期刊介绍:
The International Journal on Semantic Web and Information Systems (IJSWIS) promotes a knowledge transfer channel where academics, practitioners, and researchers can discuss, analyze, criticize, synthesize, communicate, elaborate, and simplify the more-than-promising technology of the semantic Web in the context of information systems. The journal aims to establish value-adding knowledge transfer and personal development channels in three distinctive areas: academia, industry, and government.