From Delaunay triangulation to topological data analysis: generation of more realistic synthetic power grid networks

Asim K Dey, Stephen J Young, Yulia R Gel
{"title":"From Delaunay triangulation to topological data analysis: generation of more realistic synthetic power grid networks","authors":"Asim K Dey, Stephen J Young, Yulia R Gel","doi":"10.1093/jrsssa/qnad066","DOIUrl":null,"url":null,"abstract":"Assessing novel methods for increasing power system resilience against cyber-physical hazards requires real power grid data or high-quality synthetic data. However, for security reasons, even basic connection information for real power grid data are not publicly available. We develop a randomised model for generating realistic synthetic power networks based on the Delaunay triangulation and demonstrate that it captures important features of real power networks. To validate our model, we introduce a new metric for network similarity based on topological data analysis. We demonstrate the utility of our approach in application to IEEE test cases and European power networks. We identify the model parameters for two IEEE test cases and two European power grid networks and compare the properties of the generated networks with their corresponding benchmark networks.","PeriodicalId":49985,"journal":{"name":"Journal of the Royal Statistical Society","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Royal Statistical Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/jrsssa/qnad066","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Assessing novel methods for increasing power system resilience against cyber-physical hazards requires real power grid data or high-quality synthetic data. However, for security reasons, even basic connection information for real power grid data are not publicly available. We develop a randomised model for generating realistic synthetic power networks based on the Delaunay triangulation and demonstrate that it captures important features of real power networks. To validate our model, we introduce a new metric for network similarity based on topological data analysis. We demonstrate the utility of our approach in application to IEEE test cases and European power networks. We identify the model parameters for two IEEE test cases and two European power grid networks and compare the properties of the generated networks with their corresponding benchmark networks.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
从德劳内三角剖分到拓扑数据分析:生成更真实的综合电网
评估提高电力系统抵御网络物理危害能力的新方法需要真实的电网数据或高质量的综合数据。然而,出于安全原因,即使是真实电网数据的基本连接信息也不会公开。我们开发了一个基于Delaunay三角剖分的随机模型,用于生成现实的综合电网,并证明它捕获了实际电网的重要特征。为了验证我们的模型,我们引入了一种新的基于拓扑数据分析的网络相似度度量。我们展示了我们的方法在IEEE测试用例和欧洲电网应用中的实用性。我们确定了两个IEEE测试用例和两个欧洲电网的模型参数,并将生成的网络与相应的基准网络的特性进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Bayesian approach to estimate annual bilateral migration flows for South America using census data Exploring Modeling with Data and Differential Equations Using R Calyampudi Radhakrishna (CR) Rao 1920–2023 Representative pure risk estimation by using data from epidemiologic studies, surveys, and registries: estimating risks for minority subgroups Where the bee sucks: a dynamic Bayesian network approach to decision support for pollinator abundance strategies
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1