Rui Huang, Stefano Fedeli, Cristina-Maria Hirschbiegel, Xianzhi Zhang and Vincent M. Rotello*,
{"title":"Modulation of Gold Nanoparticle Ligand Structure–Dynamic Relationships Probed Using Solution NMR","authors":"Rui Huang, Stefano Fedeli, Cristina-Maria Hirschbiegel, Xianzhi Zhang and Vincent M. Rotello*, ","doi":"10.1021/acsnanoscienceau.3c00042","DOIUrl":null,"url":null,"abstract":"<p >Ligand dynamics plays a critical role in the chemical and biological properties of gold nanoparticles (AuNPs). In this study, ligands featuring hydrophobic alkanethiol interiors and hydrophilic shells were used to systematically examine the effects of ligand headgroups on the ligand dynamics. Solution nuclear magnetic resonance (NMR) spectroscopy provided quantitative insight into the monolayer ligand dynamics. Notably, the introduction of hydrophobic moieties to the cationic headgroups significantly decreased ligand conformational mobility; however, variations in hydrophobicity among these moieties had a limited effect on this reduction. Further examination of ligand dynamics under various physiological conditions, including ionic strength and temperature, showed that ligands bound to the AuNP surface become less conformationally mobile with an increase in ionic strength or decreasing temperature. This exploration of ligand dynamics provides insight into designing nanoparticles tailored to specific biological applications.</p>","PeriodicalId":29799,"journal":{"name":"ACS Nanoscience Au","volume":"4 1","pages":"62–68"},"PeriodicalIF":4.8000,"publicationDate":"2023-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acsnanoscienceau.3c00042","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Nanoscience Au","FirstCategoryId":"1085","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsnanoscienceau.3c00042","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"NANOSCIENCE & NANOTECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Ligand dynamics plays a critical role in the chemical and biological properties of gold nanoparticles (AuNPs). In this study, ligands featuring hydrophobic alkanethiol interiors and hydrophilic shells were used to systematically examine the effects of ligand headgroups on the ligand dynamics. Solution nuclear magnetic resonance (NMR) spectroscopy provided quantitative insight into the monolayer ligand dynamics. Notably, the introduction of hydrophobic moieties to the cationic headgroups significantly decreased ligand conformational mobility; however, variations in hydrophobicity among these moieties had a limited effect on this reduction. Further examination of ligand dynamics under various physiological conditions, including ionic strength and temperature, showed that ligands bound to the AuNP surface become less conformationally mobile with an increase in ionic strength or decreasing temperature. This exploration of ligand dynamics provides insight into designing nanoparticles tailored to specific biological applications.
期刊介绍:
ACS Nanoscience Au is an open access journal that publishes original fundamental and applied research on nanoscience and nanotechnology research at the interfaces of chemistry biology medicine materials science physics and engineering.The journal publishes short letters comprehensive articles reviews and perspectives on all aspects of nanoscience and nanotechnology:synthesis assembly characterization theory modeling and simulation of nanostructures nanomaterials and nanoscale devicesdesign fabrication and applications of organic inorganic polymer hybrid and biological nanostructuresexperimental and theoretical studies of nanoscale chemical physical and biological phenomenamethods and tools for nanoscience and nanotechnologyself- and directed-assemblyzero- one- and two-dimensional materialsnanostructures and nano-engineered devices with advanced performancenanobiotechnologynanomedicine and nanotoxicologyACS Nanoscience Au also publishes original experimental and theoretical research of an applied nature that integrates knowledge in the areas of materials engineering physics bioscience and chemistry into important applications of nanomaterials.