Julien Schmitt, Vincenzo Calabrese, Marcelo A. Da Silva, Kazi M. Z. Hossain, Peixun Li, Najet Mahmoudi, Robert M. Dalgliesh, Adam L. Washington, Janet L. Scott, Karen J. Edler
{"title":"Surfactant Induced Gelation of TEMPO-Oxidized Cellulose Nanofibril Dispersions Probed Using Small Angle Neutron Scattering","authors":"Julien Schmitt, Vincenzo Calabrese, Marcelo A. Da Silva, Kazi M. Z. Hossain, Peixun Li, Najet Mahmoudi, Robert M. Dalgliesh, Adam L. Washington, Janet L. Scott, Karen J. Edler","doi":"10.1080/10448632.2023.2227026","DOIUrl":null,"url":null,"abstract":"In this work, we studied TEMPO-oxidized cellulose nanofibril (OCNF) suspensions in the presence of diverse surfactants. Using a combination of small angle neutron scattering (SANS) and rheology, we compared the physical properties of the suspensions with their structural behavior. Four surfactants were studied, all with the same hydrophobic tail length but different headgroups: hexaethylene glycol mono-n-dodecyl ether (C12EO6, nonionic), sodium dodecyl sulfate (SDS, anionic), cocamidopropyl betaine (CapB, zwitterionic), and dodecyltrimethylammonium bromide (DTAB, cationic). Contrast variation SANS studies using deuterated version of C12EO6 or SDS, or by varying the D2O/H2O ratio of the suspensions (with CapB), allowed focusing only on the structural properties of OCNFs or surfactant micelles. We showed that, in the concentration range studied, for C12EO6, although the nanofibrils are concentrated thanks to an excluded volume effect observed in SANS, the rheological properties of the suspensions are not affected. Addition of SDS or CapB induces gelation for surfactant concentrations superior to the critical micellar concentration (CMC). SANS results show that attractive interactions between OCNFs arise in the presence of these anionic or zwitterionic surfactants, hinting at depletion attraction as the main mechanism of gelation. Finally, addition of small amounts of DTAB (below the CMC) allows formation of a tough gel by adsorbing onto the OCNF surface.","PeriodicalId":39014,"journal":{"name":"Neutron News","volume":"15 S3","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neutron News","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/10448632.2023.2227026","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 1
Abstract
In this work, we studied TEMPO-oxidized cellulose nanofibril (OCNF) suspensions in the presence of diverse surfactants. Using a combination of small angle neutron scattering (SANS) and rheology, we compared the physical properties of the suspensions with their structural behavior. Four surfactants were studied, all with the same hydrophobic tail length but different headgroups: hexaethylene glycol mono-n-dodecyl ether (C12EO6, nonionic), sodium dodecyl sulfate (SDS, anionic), cocamidopropyl betaine (CapB, zwitterionic), and dodecyltrimethylammonium bromide (DTAB, cationic). Contrast variation SANS studies using deuterated version of C12EO6 or SDS, or by varying the D2O/H2O ratio of the suspensions (with CapB), allowed focusing only on the structural properties of OCNFs or surfactant micelles. We showed that, in the concentration range studied, for C12EO6, although the nanofibrils are concentrated thanks to an excluded volume effect observed in SANS, the rheological properties of the suspensions are not affected. Addition of SDS or CapB induces gelation for surfactant concentrations superior to the critical micellar concentration (CMC). SANS results show that attractive interactions between OCNFs arise in the presence of these anionic or zwitterionic surfactants, hinting at depletion attraction as the main mechanism of gelation. Finally, addition of small amounts of DTAB (below the CMC) allows formation of a tough gel by adsorbing onto the OCNF surface.