Predictability of commodity futures returns with machine learning models

IF 1.8 4区 经济学 Q2 BUSINESS, FINANCE Journal of Futures Markets Pub Date : 2023-11-08 DOI:10.1002/fut.22471
Shirui Wang, Tianyang Zhang
{"title":"Predictability of commodity futures returns with machine learning models","authors":"Shirui Wang,&nbsp;Tianyang Zhang","doi":"10.1002/fut.22471","DOIUrl":null,"url":null,"abstract":"<p>We use prevailing machine learning models to investigate the predictability of futures returns in 22 commodities with commodity-specific and macroeconomic factors as predictors. Out-of-sample prediction errors for the majority of futures contracts are lowered compared with those obtained by the baseline models of AR(1) and forecast combinations. Using Shapley values to explain feature importance, we identify dominant predictors for each commodity. A long–short portfolio strategy based on monthly light gradient-boosting machine predictions outperforms the benchmark linear models in terms of annual return, Sharpe ratio, and max drawdown.</p>","PeriodicalId":15863,"journal":{"name":"Journal of Futures Markets","volume":"44 2","pages":"302-322"},"PeriodicalIF":1.8000,"publicationDate":"2023-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Futures Markets","FirstCategoryId":"96","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/fut.22471","RegionNum":4,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BUSINESS, FINANCE","Score":null,"Total":0}
引用次数: 0

Abstract

We use prevailing machine learning models to investigate the predictability of futures returns in 22 commodities with commodity-specific and macroeconomic factors as predictors. Out-of-sample prediction errors for the majority of futures contracts are lowered compared with those obtained by the baseline models of AR(1) and forecast combinations. Using Shapley values to explain feature importance, we identify dominant predictors for each commodity. A long–short portfolio strategy based on monthly light gradient-boosting machine predictions outperforms the benchmark linear models in terms of annual return, Sharpe ratio, and max drawdown.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用机器学习模型预测商品期货收益
我们使用流行的机器学习模型来研究 22 种商品期货收益的可预测性,并将商品特有因素和宏观经济因素作为预测因子。与 AR(1) 基线模型和预测组合模型相比,大多数期货合约的样本外预测误差都有所降低。利用 Shapley 值来解释特征的重要性,我们确定了每种商品的主要预测因素。基于月度轻梯度提升机器预测的多空组合策略在年收益率、夏普比率和最大缩水率方面都优于基准线性模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Futures Markets
Journal of Futures Markets BUSINESS, FINANCE-
CiteScore
3.70
自引率
15.80%
发文量
91
期刊介绍: The Journal of Futures Markets chronicles the latest developments in financial futures and derivatives. It publishes timely, innovative articles written by leading finance academics and professionals. Coverage ranges from the highly practical to theoretical topics that include futures, derivatives, risk management and control, financial engineering, new financial instruments, hedging strategies, analysis of trading systems, legal, accounting, and regulatory issues, and portfolio optimization. This publication contains the very latest research from the top experts.
期刊最新文献
Journal of Futures Markets: Volume 44, Number 12, December 2024 Journal of Futures Markets: Volume 44, Number 11, November 2024 Frequent Trading and Investment Performance: Evidence From the KOSPI 200 Futures Market Journal of Futures Markets: Volume 44, Number 10, October 2024 Novel Analytic Representations for Caps, Floors, Collars, and Exchange Options on Continuous Flows, Arbitrage-Free Relations, and Optimal Investments
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1