{"title":"HURST EXPONENT ESTIMATION FOR SHORT-TIME SERIES BASED ON SINGULAR VALUE DECOMPOSITION ENTROPY","authors":"J. ALVAREZ-RAMIREZ, E. RODRIGUEZ, L. CASTRO","doi":"10.1142/s0218348x23501323","DOIUrl":null,"url":null,"abstract":"Complex time series appear commonly in a large diversity of the science, engineering, economy, financial and social fields. In many instances, complex time series exhibit scaling behavior over a wide range of scales. The traditional rescaled-range (R/S) analysis and the detrended fluctuation analysis (DFA) are commonly used to characterize the scaling behavior via the Hurst exponent. These methods perform well for long-time series. However, the performance may be poor for short times resulting from scarce measurements (e.g. less than a hundred). This work proposes an approach based on singular value decomposition (SVD) entropy for estimating the Hurst exponent for short-time series. In the first step, synthetic time series were used to find the relationship between Hurst exponent and SVD entropy. In the second step, an empirical relationship was proposed to estimate the Hurst exponent from SVD entropy computations of the time series. The performance of the approach was illustrated with two examples of real-time series (consumer price index (CPI) and El Niño Oceanic Index), showing that the estimated Hurst exponent provides valuable insights into the physical mechanisms involved in the generation of the time series.","PeriodicalId":55144,"journal":{"name":"Fractals-Complex Geometry Patterns and Scaling in Nature and Society","volume":"103 1","pages":"0"},"PeriodicalIF":3.3000,"publicationDate":"2023-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fractals-Complex Geometry Patterns and Scaling in Nature and Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s0218348x23501323","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
Complex time series appear commonly in a large diversity of the science, engineering, economy, financial and social fields. In many instances, complex time series exhibit scaling behavior over a wide range of scales. The traditional rescaled-range (R/S) analysis and the detrended fluctuation analysis (DFA) are commonly used to characterize the scaling behavior via the Hurst exponent. These methods perform well for long-time series. However, the performance may be poor for short times resulting from scarce measurements (e.g. less than a hundred). This work proposes an approach based on singular value decomposition (SVD) entropy for estimating the Hurst exponent for short-time series. In the first step, synthetic time series were used to find the relationship between Hurst exponent and SVD entropy. In the second step, an empirical relationship was proposed to estimate the Hurst exponent from SVD entropy computations of the time series. The performance of the approach was illustrated with two examples of real-time series (consumer price index (CPI) and El Niño Oceanic Index), showing that the estimated Hurst exponent provides valuable insights into the physical mechanisms involved in the generation of the time series.
期刊介绍:
The investigation of phenomena involving complex geometry, patterns and scaling has gone through a spectacular development and applications in the past decades. For this relatively short time, geometrical and/or temporal scaling have been shown to represent the common aspects of many processes occurring in an unusually diverse range of fields including physics, mathematics, biology, chemistry, economics, engineering and technology, and human behavior. As a rule, the complex nature of a phenomenon is manifested in the underlying intricate geometry which in most of the cases can be described in terms of objects with non-integer (fractal) dimension. In other cases, the distribution of events in time or various other quantities show specific scaling behavior, thus providing a better understanding of the relevant factors determining the given processes.
Using fractal geometry and scaling as a language in the related theoretical, numerical and experimental investigations, it has been possible to get a deeper insight into previously intractable problems. Among many others, a better understanding of growth phenomena, turbulence, iterative functions, colloidal aggregation, biological pattern formation, stock markets and inhomogeneous materials has emerged through the application of such concepts as scale invariance, self-affinity and multifractality.
The main challenge of the journal devoted exclusively to the above kinds of phenomena lies in its interdisciplinary nature; it is our commitment to bring together the most recent developments in these fields so that a fruitful interaction of various approaches and scientific views on complex spatial and temporal behaviors in both nature and society could take place.