A Review of the Laser Cladding of Metal-Based Alloys, Ceramic-Reinforced Composites, Amorphous Alloys, and High-Entropy Alloys on Aluminum Alloys

IF 3.1 3区 工程技术 Q2 ENGINEERING, MECHANICAL Lubricants Pub Date : 2023-11-08 DOI:10.3390/lubricants11110482
Pengfei Zhao, Zimu Shi, Xingfu Wang, Yanzhou Li, Zhanyi Cao, Modi Zhao, Juhua Liang
{"title":"A Review of the Laser Cladding of Metal-Based Alloys, Ceramic-Reinforced Composites, Amorphous Alloys, and High-Entropy Alloys on Aluminum Alloys","authors":"Pengfei Zhao, Zimu Shi, Xingfu Wang, Yanzhou Li, Zhanyi Cao, Modi Zhao, Juhua Liang","doi":"10.3390/lubricants11110482","DOIUrl":null,"url":null,"abstract":"As one of the lightest structural metals, the application breadth of aluminum alloys is, to some extent, constrained by their relatively low wear resistance and hardness. However, laser cladding technology, with its low dilution rate, compact structure, excellent coating-to-substrate bonding, and environmental advantages, can significantly enhance the surface hardness and wear resistance of aluminum alloys, thus proving to be an effective surface modification strategy. This review focuses on the topic of surface laser cladding materials for aluminum alloys, detailing the application background, process, microstructure, hardness, wear resistance, and corrosion resistance of six types of coatings, namely Al-based, Ni-based, Fe-based, ceramic-based, amorphous glass, and high-entropy alloys. Each coating type’s characteristics are summarized, providing theoretical references for designing and selecting laser cladding coatings for aluminum alloy surfaces. Furthermore, a prediction and outlook for the future development of laser cladding on the surface of aluminum alloys is also presented.","PeriodicalId":18135,"journal":{"name":"Lubricants","volume":"72 S6","pages":"0"},"PeriodicalIF":3.1000,"publicationDate":"2023-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Lubricants","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/lubricants11110482","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

Abstract

As one of the lightest structural metals, the application breadth of aluminum alloys is, to some extent, constrained by their relatively low wear resistance and hardness. However, laser cladding technology, with its low dilution rate, compact structure, excellent coating-to-substrate bonding, and environmental advantages, can significantly enhance the surface hardness and wear resistance of aluminum alloys, thus proving to be an effective surface modification strategy. This review focuses on the topic of surface laser cladding materials for aluminum alloys, detailing the application background, process, microstructure, hardness, wear resistance, and corrosion resistance of six types of coatings, namely Al-based, Ni-based, Fe-based, ceramic-based, amorphous glass, and high-entropy alloys. Each coating type’s characteristics are summarized, providing theoretical references for designing and selecting laser cladding coatings for aluminum alloy surfaces. Furthermore, a prediction and outlook for the future development of laser cladding on the surface of aluminum alloys is also presented.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
金属基合金、陶瓷增强复合材料、非晶合金和高熵合金在铝合金上的激光熔覆研究进展
铝合金作为最轻的结构金属之一,其相对较低的耐磨性和硬度在一定程度上制约了其应用的广度。而激光熔覆技术由于其稀释率低、结构致密、涂层与基体结合良好、环保等优点,可以显著提高铝合金的表面硬度和耐磨性,是一种有效的表面改性策略。介绍了铝合金表面激光熔覆材料的应用背景、工艺、显微组织、硬度、耐磨性和耐蚀性,介绍了铝基、镍基、铁基、陶瓷基、非晶玻璃和高熵合金等六种表面激光熔覆材料。总结了各涂层类型的特点,为铝合金表面激光熔覆涂层的设计和选择提供理论参考。最后,对铝合金表面激光熔覆的未来发展进行了预测和展望。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Lubricants
Lubricants Engineering-Mechanical Engineering
CiteScore
3.60
自引率
25.70%
发文量
293
审稿时长
11 weeks
期刊介绍: This journal is dedicated to the field of Tribology and closely related disciplines. This includes the fundamentals of the following topics: -Lubrication, comprising hydrostatics, hydrodynamics, elastohydrodynamics, mixed and boundary regimes of lubrication -Friction, comprising viscous shear, Newtonian and non-Newtonian traction, boundary friction -Wear, including adhesion, abrasion, tribo-corrosion, scuffing and scoring -Cavitation and erosion -Sub-surface stressing, fatigue spalling, pitting, micro-pitting -Contact Mechanics: elasticity, elasto-plasticity, adhesion, viscoelasticity, poroelasticity, coatings and solid lubricants, layered bonded and unbonded solids -Surface Science: topography, tribo-film formation, lubricant–surface combination, surface texturing, micro-hydrodynamics, micro-elastohydrodynamics -Rheology: Newtonian, non-Newtonian fluids, dilatants, pseudo-plastics, thixotropy, shear thinning -Physical chemistry of lubricants, boundary active species, adsorption, bonding
期刊最新文献
Effect of a Substrate’s Preheating Temperature on the Microstructure and Properties of Ni-Based Alloy Coatings Effect of Operating Parameters on the Mulching Device Wear Behavior of a Ridging and Mulching Machine A Generalised Method for Friction Optimisation of Surface Textured Seals by Machine Learning Influence of 1-Ethyl-3-methylimidazolium Diethylphosphate Ionic Liquid on the Performance of Eu- and Gd-Doped Diamond-like Carbon Coatings The Effect of Slider Configuration on Lubricant Depletion at the Slider/Disk Contact Interface
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1