Efficient parallelization of quantum basis state shift

IF 5 2区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY Quantum Science and Technology Pub Date : 2023-09-28 DOI:10.1088/2058-9565/acfab7
Ljubomir Budinski, Ossi Niemimäki, Roberto Zamora-Zamora, Valtteri Lahtinen
{"title":"Efficient parallelization of quantum basis state shift","authors":"Ljubomir Budinski, Ossi Niemimäki, Roberto Zamora-Zamora, Valtteri Lahtinen","doi":"10.1088/2058-9565/acfab7","DOIUrl":null,"url":null,"abstract":"Abstract Basis state shift is central to many quantum algorithms, most notably the quantum walk. Efficient implementations are of major importance for achieving a quantum speedup for computational applications. We optimize the state shift algorithm by incorporating the shift in different directions in parallel. This provides a significant reduction in the depth of the quantum circuit in comparison to the currently known methods, giving a linear scaling in the number of gates versus working qubits in contrast to the quadratic scaling of the state-of-the-art method based on the quantum Fourier transform. For a one-dimensional array of size 2 n for n &gt; 4, we derive the total number of <?CDATA $15n + 74$?> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" overflow=\"scroll\"> <mml:mn>15</mml:mn> <mml:mi>n</mml:mi> <mml:mo>+</mml:mo> <mml:mn>74</mml:mn> </mml:math> two-qubit CX gates in the parallel circuit, using a total of <?CDATA $2n-2$?> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" overflow=\"scroll\"> <mml:mn>2</mml:mn> <mml:mi>n</mml:mi> <mml:mo>−</mml:mo> <mml:mn>2</mml:mn> </mml:math> qubits including an ancilla register for the decomposition of multi-controlled gates. We focus on the one-dimensional and periodic shift, but note that the method can be extended to more complex cases.","PeriodicalId":20821,"journal":{"name":"Quantum Science and Technology","volume":"13 1","pages":"0"},"PeriodicalIF":5.0000,"publicationDate":"2023-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quantum Science and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/2058-9565/acfab7","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract Basis state shift is central to many quantum algorithms, most notably the quantum walk. Efficient implementations are of major importance for achieving a quantum speedup for computational applications. We optimize the state shift algorithm by incorporating the shift in different directions in parallel. This provides a significant reduction in the depth of the quantum circuit in comparison to the currently known methods, giving a linear scaling in the number of gates versus working qubits in contrast to the quadratic scaling of the state-of-the-art method based on the quantum Fourier transform. For a one-dimensional array of size 2 n for n > 4, we derive the total number of 15 n + 74 two-qubit CX gates in the parallel circuit, using a total of 2 n 2 qubits including an ancilla register for the decomposition of multi-controlled gates. We focus on the one-dimensional and periodic shift, but note that the method can be extended to more complex cases.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
量子基态位移的高效并行化
基态转移是许多量子算法的核心,尤其是量子行走。高效的实现对于实现计算应用的量子加速至关重要。我们通过将不同方向的移动并行化来优化状态转移算法。与目前已知的方法相比,这大大减少了量子电路的深度,与基于量子傅里叶变换的最先进方法的二次缩放相比,门的数量与工作量子位的数量呈线性缩放。对于大小为2n的一维数组n >4,我们推导了并行电路中15n + 74个双量子位CX门的总数,总共使用2n−2个量子位,包括一个辅助寄存器,用于多控制门的分解。我们的重点是一维和周期位移,但注意,该方法可以扩展到更复杂的情况。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Quantum Science and Technology
Quantum Science and Technology Materials Science-Materials Science (miscellaneous)
CiteScore
11.20
自引率
3.00%
发文量
133
期刊介绍: Driven by advances in technology and experimental capability, the last decade has seen the emergence of quantum technology: a new praxis for controlling the quantum world. It is now possible to engineer complex, multi-component systems that merge the once distinct fields of quantum optics and condensed matter physics. Quantum Science and Technology is a new multidisciplinary, electronic-only journal, devoted to publishing research of the highest quality and impact covering theoretical and experimental advances in the fundamental science and application of all quantum-enabled technologies.
期刊最新文献
Mirrored entanglement witnesses for multipartite and high-dimensional quantum systems Maximal magic for two-qubit states Unbiased observable estimation with approximate channels in fault-tolerant quantum computation Intermediate-temperature topological Uhlmann phase on IBM quantum computers Cooling mechanical motion with polaritons
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1