Optimization of convolutional neural networks for background suppression in the PandaX-III experiment

Shangning Xia, Suizhi Huang, Kexin Xu, Tao Li, Xun Chen, Ke Han, Shaobo Wang
{"title":"Optimization of convolutional neural networks for background suppression in the PandaX-III experiment","authors":"Shangning Xia, Suizhi Huang, Kexin Xu, Tao Li, Xun Chen, Ke Han, Shaobo Wang","doi":"10.1088/1361-6471/acfe24","DOIUrl":null,"url":null,"abstract":"Abstract The tracks recorded by a gaseous detector provide a possibility for charged particle identi fication. For searching the neutrinoless double beta decay events of 136Xe in the PandaX-III experiment, we optimized the convolutional neural network based on the Monte Carlo simulation data to improve the signal-background discrimination power. EfficientNet is chosen as the baseline model and the optimization is performed by tuning the hyperparameters. In particular, the maximum discrimination power is achieved by optimizing the channel number of the top convolutional layer. In comparison with our previous work, the significance of discrimination has been improved by ∼70%.
","PeriodicalId":16770,"journal":{"name":"Journal of Physics G","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physics G","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/1361-6471/acfe24","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Abstract The tracks recorded by a gaseous detector provide a possibility for charged particle identi fication. For searching the neutrinoless double beta decay events of 136Xe in the PandaX-III experiment, we optimized the convolutional neural network based on the Monte Carlo simulation data to improve the signal-background discrimination power. EfficientNet is chosen as the baseline model and the optimization is performed by tuning the hyperparameters. In particular, the maximum discrimination power is achieved by optimizing the channel number of the top convolutional layer. In comparison with our previous work, the significance of discrimination has been improved by ∼70%.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
PandaX-III实验中卷积神经网络背景抑制的优化
气体探测器记录的轨迹为带电粒子的识别提供了可能。为了在PandaX-III实验中搜索136Xe的中微子双β衰变事件,我们基于蒙特卡罗模拟数据对卷积神经网络进行了优化,提高了信号背景辨别能力。选择effentnet作为基准模型,并通过调优超参数来执行优化。特别地,通过优化最上层卷积层的通道数来实现最大识别功率。与我们之前的工作相比,歧视的显著性提高了约70%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Search for the anomalous quartic gauge couplings through Zγ production at e-e+ colliders Energy and system size dependence of strongly intensive fluctuation measures in heavy-ion collisions at FAIR energies Elliptic flow of inclusive charged hadrons in Au+Au collisions at Elab = 35 A GeV using the PHSD model Measurement of neutron induced reaction cross-section of 99Mo Systematic of fusion suppression and its dependency on projectile breakup threshold energy
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1