Hong Xiong, Yuxiang Chen, Hui Cheng, Hong Zhu, Chunliang Yu, Guodong Zheng, Yiyang Xing
{"title":"Translational and Rotational Motion Measurement of a Spherical Particle in Hydraulic Collecting","authors":"Hong Xiong, Yuxiang Chen, Hui Cheng, Hong Zhu, Chunliang Yu, Guodong Zheng, Yiyang Xing","doi":"10.17736/ijope.2023.jc888","DOIUrl":null,"url":null,"abstract":"Research on the motion of particles in fluid conveying is significant for the mechanism study of the hydraulic collecting process in deep-ocean mining. Experiments were conducted in a water tank to measure the translational and rotational motion of spherical particles by developing a spherical detector with a built-in three-dimensional acceleration microsensor and a three-dimensional microgyroscope. The three-axis linear acceleration and angular velocity can be measured and stored by the detector. The attitude angle, defined as the spatial rotation of the detector coordinate system relative to the laboratory coordinate system and described via the Euler angle, is obtained with a quaternion algorithm and a Kalman filter. The method is validated with a 50 mm diameter spherical object by three respective tests. Finally, the detector is tested as a tracer particle in hydraulic collecting. Findings indicate that the method is capable of tracing the detailed behaviors of particles in hydraulic collecting.","PeriodicalId":50302,"journal":{"name":"International Journal of Offshore and Polar Engineering","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Offshore and Polar Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17736/ijope.2023.jc888","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0
Abstract
Research on the motion of particles in fluid conveying is significant for the mechanism study of the hydraulic collecting process in deep-ocean mining. Experiments were conducted in a water tank to measure the translational and rotational motion of spherical particles by developing a spherical detector with a built-in three-dimensional acceleration microsensor and a three-dimensional microgyroscope. The three-axis linear acceleration and angular velocity can be measured and stored by the detector. The attitude angle, defined as the spatial rotation of the detector coordinate system relative to the laboratory coordinate system and described via the Euler angle, is obtained with a quaternion algorithm and a Kalman filter. The method is validated with a 50 mm diameter spherical object by three respective tests. Finally, the detector is tested as a tracer particle in hydraulic collecting. Findings indicate that the method is capable of tracing the detailed behaviors of particles in hydraulic collecting.
期刊介绍:
The primary aim of the IJOPE is to serve engineers and researchers worldwide by disseminating technical information of permanent interest in the fields of offshore, ocean, polar energy/resources and materials engineering. The IJOPE is the principal periodical of The International Society of Offshore and Polar Engineers (ISOPE), which is very active in the dissemination of technical information and organization of symposia and conferences in these fields throughout the world.
Theoretical, experimental and engineering research papers are welcome. Brief reports of research results or outstanding engineering achievements of likely interest to readers will be published in the Technical Notes format.