{"title":"Application of UVC-LED/H2O2 in wastewater treatments: treatment efficacy on disinfection byproduct precursors and micropollutants","authors":"Dexter Leong, Hao-Bin Chen, Gen-Shuh Wang","doi":"10.1186/s42834-023-00194-7","DOIUrl":null,"url":null,"abstract":"Abstract The applications of advanced oxidation processes (AOPs) for controlling microcontaminants are essential to meet the water quality criteria for potable or nonpotable water reuses. The objective of this study is to demonstrate the application of light emitting diode (LED) as a possible light source to substitute traditional low-pressure mercury lamp (LPUV) in UV/H 2 O 2 processes in treating precursors of disinfection byproducts (DBPs) and pharmaceutical and personals care products (PPCPs) in wastewater. The results of this study revealed that UV fluence plays the most crucial role in the efficiency of UV/H 2 O 2 . At the same time, the initial concentration of H 2 O 2 , dissolved organic carbon (DOC), and turbidity had minimal effects, except that poor efficiency result of UV/H 2 O 2 was observed at a solution with low DOC concentration (2.4 mg L −1 ). Although the concentrations of organic matter decreased after UV/H 2 O 2 treatment, the concentration of precursors of DBPs increased in the early stage of the photolysis process and decreased after that; moreover, the profiles of precursors for trihalomethanes and haloacetic acids were different. A comparison between LPUV and UVC-LED as light sources revealed that, at a fixed UV fluence input into the UV/H 2 O 2 process, the trends and efficiencies in the degradation of organic matter and DBP precursors were similar. Meanwhile, the photoelectric conversion efficiency of UVC-LED should be improved for future applications in water treatment. Based on the UV/H 2 O 2 treatment results on synthetic PPCPs wastewater solution, this study showed the effectiveness of UV/H 2 O 2 to degrade micro organic contaminants.","PeriodicalId":22130,"journal":{"name":"Sustainable Environment Research","volume":"7 1","pages":"0"},"PeriodicalIF":4.6000,"publicationDate":"2023-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sustainable Environment Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s42834-023-00194-7","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract The applications of advanced oxidation processes (AOPs) for controlling microcontaminants are essential to meet the water quality criteria for potable or nonpotable water reuses. The objective of this study is to demonstrate the application of light emitting diode (LED) as a possible light source to substitute traditional low-pressure mercury lamp (LPUV) in UV/H 2 O 2 processes in treating precursors of disinfection byproducts (DBPs) and pharmaceutical and personals care products (PPCPs) in wastewater. The results of this study revealed that UV fluence plays the most crucial role in the efficiency of UV/H 2 O 2 . At the same time, the initial concentration of H 2 O 2 , dissolved organic carbon (DOC), and turbidity had minimal effects, except that poor efficiency result of UV/H 2 O 2 was observed at a solution with low DOC concentration (2.4 mg L −1 ). Although the concentrations of organic matter decreased after UV/H 2 O 2 treatment, the concentration of precursors of DBPs increased in the early stage of the photolysis process and decreased after that; moreover, the profiles of precursors for trihalomethanes and haloacetic acids were different. A comparison between LPUV and UVC-LED as light sources revealed that, at a fixed UV fluence input into the UV/H 2 O 2 process, the trends and efficiencies in the degradation of organic matter and DBP precursors were similar. Meanwhile, the photoelectric conversion efficiency of UVC-LED should be improved for future applications in water treatment. Based on the UV/H 2 O 2 treatment results on synthetic PPCPs wastewater solution, this study showed the effectiveness of UV/H 2 O 2 to degrade micro organic contaminants.
期刊介绍:
The primary goal of Sustainable Environment Research (SER) is to publish high quality research articles associated with sustainable environmental science and technology and to contribute to improving environmental practice. The scope of SER includes issues of environmental science, technology, management and related fields, especially in response to sustainable water, energy and other natural resources. Potential topics include, but are not limited to: 1. Water and Wastewater • Biological processes • Physical and chemical processes • Watershed management • Advanced and innovative treatment 2. Soil and Groundwater Pollution • Contaminant fate and transport processes • Contaminant site investigation technology • Soil and groundwater remediation technology • Risk assessment in contaminant sites 3. Air Pollution and Climate Change • Ambient air quality management • Greenhouse gases control • Gaseous and particulate pollution control • Indoor air quality management and control 4. Waste Management • Waste reduction and minimization • Recourse recovery and conservation • Solid waste treatment technology and disposal 5. Energy and Resources • Sustainable energy • Local, regional and global sustainability • Environmental management system • Life-cycle assessment • Environmental policy instruments