{"title":"Axial Resolution Enhancement of Borehole Acoustic Measurements via Inversion-Based interpretation Supported with Ultrasonic data","authors":"Jingxuan Liu, Ali Eghbali, Carlos Torres-Verdín","doi":"10.1190/geo2023-0313.1","DOIUrl":null,"url":null,"abstract":"Conventional borehole acoustic measurements deliver compressional and shear wave slowness logs that inherently average in-situ rock properties along the receiver array of the acoustic instrument. These acquisition and processing conditions often limit the accuracy and resolution of the estimated rock elastic properties across heterolithic sedimentary sequences. We introduce an inversion-based interpretation method for borehole acoustic measurements that improves their vertical resolution by complementing them with ultrasonic borehole images. Results consist of high-resolution, layer-by-layer compressional and shear wave slownesses. The combination of borehole acoustic measurements with borehole ultrasonic images enhances the definition of small rock features such as thin beds or vugs. We verify the new inversion-based interpretation method with synthetic borehole measurements and field acoustic logs acquired across sandstone-shale laminated formations and spatially heterogeneous carbonates. High-resolution layer-by-layer compressional and shear slownesses obtained with the new inversion method give rise to wider variations of calculated elastic properties than with standard acoustic logs for improved petrophysical and geomechanical evaluation. It is also found that implementing a common set of layers for the estimation of layer-by-layer rock elastic properties mitigates biases due to discrepancies in the intrinsic resolution of the various input measurements.","PeriodicalId":55102,"journal":{"name":"Geophysics","volume":"121 1","pages":"0"},"PeriodicalIF":3.0000,"publicationDate":"2023-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geophysics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1190/geo2023-0313.1","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
Conventional borehole acoustic measurements deliver compressional and shear wave slowness logs that inherently average in-situ rock properties along the receiver array of the acoustic instrument. These acquisition and processing conditions often limit the accuracy and resolution of the estimated rock elastic properties across heterolithic sedimentary sequences. We introduce an inversion-based interpretation method for borehole acoustic measurements that improves their vertical resolution by complementing them with ultrasonic borehole images. Results consist of high-resolution, layer-by-layer compressional and shear wave slownesses. The combination of borehole acoustic measurements with borehole ultrasonic images enhances the definition of small rock features such as thin beds or vugs. We verify the new inversion-based interpretation method with synthetic borehole measurements and field acoustic logs acquired across sandstone-shale laminated formations and spatially heterogeneous carbonates. High-resolution layer-by-layer compressional and shear slownesses obtained with the new inversion method give rise to wider variations of calculated elastic properties than with standard acoustic logs for improved petrophysical and geomechanical evaluation. It is also found that implementing a common set of layers for the estimation of layer-by-layer rock elastic properties mitigates biases due to discrepancies in the intrinsic resolution of the various input measurements.
期刊介绍:
Geophysics, published by the Society of Exploration Geophysicists since 1936, is an archival journal encompassing all aspects of research, exploration, and education in applied geophysics.
Geophysics articles, generally more than 275 per year in six issues, cover the entire spectrum of geophysical methods, including seismology, potential fields, electromagnetics, and borehole measurements. Geophysics, a bimonthly, provides theoretical and mathematical tools needed to reproduce depicted work, encouraging further development and research.
Geophysics papers, drawn from industry and academia, undergo a rigorous peer-review process to validate the described methods and conclusions and ensure the highest editorial and production quality. Geophysics editors strongly encourage the use of real data, including actual case histories, to highlight current technology and tutorials to stimulate ideas. Some issues feature a section of solicited papers on a particular subject of current interest. Recent special sections focused on seismic anisotropy, subsalt exploration and development, and microseismic monitoring.
The PDF format of each Geophysics paper is the official version of record.