Deep Neural Networks Based End-to-End DOA Estimation System

IF 0.7 4区 计算机科学 Q3 Engineering IEICE Transactions on Communications Pub Date : 2023-01-01 DOI:10.1587/transcom.2023cep0006
Daniel Akira ANDO, Yuya KASE, Toshihiko NISHIMURA, Takanori SATO, Takeo OHGANE, Yasutaka OGAWA, Junichiro HAGIWARA
{"title":"Deep Neural Networks Based End-to-End DOA Estimation System","authors":"Daniel Akira ANDO, Yuya KASE, Toshihiko NISHIMURA, Takanori SATO, Takeo OHGANE, Yasutaka OGAWA, Junichiro HAGIWARA","doi":"10.1587/transcom.2023cep0006","DOIUrl":null,"url":null,"abstract":"Direction of arrival (DOA) estimation is an antenna array signal processing technique used in, for instance, radar and sonar systems, source localization, and channel state information retrieval. As new applications and use cases appear with the development of next generation mobile communications systems, DOA estimation performance must be continually increased in order to support the nonstop growing demand for wireless technologies. In previous works, we verified that a deep neural network (DNN) trained offline is a strong candidate tool with the promise of achieving great on-grid DOA estimation performance, even compared to traditional algorithms. In this paper, we propose new techniques for further DOA estimation accuracy enhancement incorporating signal-to-noise ratio (SNR) prediction and an end-to-end DOA estimation system, which consists of three components: source number estimator, DOA angular spectrum grid estimator, and DOA detector. Here, we expand the performance of the DOA detector and angular spectrum estimator, and present a new solution for source number estimation based on DNN with very simple design. The proposed DNN system applied with said enhancement techniques has shown great estimation performance regarding the success rate metric for the case of two radio wave sources although not fully satisfactory results are obtained for the case of three sources.","PeriodicalId":48825,"journal":{"name":"IEICE Transactions on Communications","volume":"1 1","pages":"0"},"PeriodicalIF":0.7000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEICE Transactions on Communications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1587/transcom.2023cep0006","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

Abstract

Direction of arrival (DOA) estimation is an antenna array signal processing technique used in, for instance, radar and sonar systems, source localization, and channel state information retrieval. As new applications and use cases appear with the development of next generation mobile communications systems, DOA estimation performance must be continually increased in order to support the nonstop growing demand for wireless technologies. In previous works, we verified that a deep neural network (DNN) trained offline is a strong candidate tool with the promise of achieving great on-grid DOA estimation performance, even compared to traditional algorithms. In this paper, we propose new techniques for further DOA estimation accuracy enhancement incorporating signal-to-noise ratio (SNR) prediction and an end-to-end DOA estimation system, which consists of three components: source number estimator, DOA angular spectrum grid estimator, and DOA detector. Here, we expand the performance of the DOA detector and angular spectrum estimator, and present a new solution for source number estimation based on DNN with very simple design. The proposed DNN system applied with said enhancement techniques has shown great estimation performance regarding the success rate metric for the case of two radio wave sources although not fully satisfactory results are obtained for the case of three sources.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于深度神经网络的端到端DOA估计系统
到达方向(DOA)估计是一种天线阵列信号处理技术,用于雷达和声纳系统、源定位和信道状态信息检索。随着下一代移动通信系统的发展,新的应用和用例不断出现,为了支持不断增长的无线技术需求,必须不断提高DOA估计性能。在之前的工作中,我们验证了离线训练的深度神经网络(DNN)是一种强大的候选工具,即使与传统算法相比,它也有望实现出色的网格上DOA估计性能。在本文中,我们提出了进一步提高DOA估计精度的新技术,包括信噪比(SNR)预测和端到端DOA估计系统,该系统由三个部分组成:源数估计器、DOA角谱网格估计器和DOA检测器。在此基础上,我们扩展了DOA检测器和角谱估计器的性能,提出了一种基于深度神经网络的信源数估计新方案。应用上述增强技术所提出的深度神经网络系统在两个无线电波源情况下的成功率度量方面显示出良好的估计性能,尽管在三个无线电波源情况下获得的结果并不完全令人满意。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
IEICE Transactions on Communications
IEICE Transactions on Communications ENGINEERING, ELECTRICAL & ELECTRONIC-TELECOMMUNICATIONS
CiteScore
1.50
自引率
28.60%
发文量
101
期刊介绍: The IEICE Transactions on Communications is an all-electronic journal published occasionally by the Institute of Electronics, Information and Communication Engineers (IEICE) and edited by the Communications Society in IEICE. The IEICE Transactions on Communications publishes original, peer-reviewed papers that embrace the entire field of communications, including: - Fundamental Theories for Communications - Energy in Electronics Communications - Transmission Systems and Transmission Equipment for Communications - Optical Fiber for Communications - Fiber-Optic Transmission for Communications - Network System - Network - Internet - Network Management/Operation - Antennas and Propagation - Electromagnetic Compatibility (EMC) - Wireless Communication Technologies - Terrestrial Wireless Communication/Broadcasting Technologies - Satellite Communications - Sensing - Navigation, Guidance and Control Systems - Space Utilization Systems for Communications - Multimedia Systems for Communication
期刊最新文献
Service Deployment Model with Virtual Network Function Resizing Based on Per-Flow Priority Optimizing Edge-Cloud Cooperation for Machine Learning Accuracy Considering Transmission Latency and Bandwidth Congestion Intrusion Detection Model of Internet of Things Based on LightGBM Sub-Signal Channel Modulation for Hitless Redundancy Switching Systems A Resource-Efficient Green Paradigm For Crowdsensing Based Spectrum Detection In Internet of Things Networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1