Calculation and analysis of total phosphorus pollution load based on mass balance in Lake Taihu since 2007

Q2 Earth and Planetary Sciences 湖泊科学 Pub Date : 2023-01-01 DOI:10.18307/2023.0520
Mao Xinwei, Dai Qianzi, Wu Haoyun, Xu Feng, Li Tao
{"title":"Calculation and analysis of total phosphorus pollution load based on mass balance in Lake Taihu since 2007","authors":"Mao Xinwei, Dai Qianzi, Wu Haoyun, Xu Feng, Li Tao","doi":"10.18307/2023.0520","DOIUrl":null,"url":null,"abstract":"磷是太湖富营养化的关键性指标,为了解太湖总磷内、外源变化趋势及特征,从总磷污染负荷动态平衡角度分析太湖总磷主要来源与总磷浓度高位波动的原因,本研究基于2007年以来长时序水量水质监测资料和调查数据,开展了太湖进出各途径的总磷负荷质量平衡估算及分析。结果表明,2007—2020年入湖河道输入总磷负荷为1835~2799 t,占太湖总磷负荷的55%~73%,是外源输入最主要的途径;大气干湿沉降输入353~1380 t,占太湖总磷负荷量的12%~38%,是太湖总磷外源输入的第二大途径;太湖水体中总磷负荷量约占8%~15%。出湖河道输出总磷负荷量为516~906 t,占太湖总磷负荷量的13%~30%;水生动植物捕捞总磷负荷量为115~312 t,占太湖总磷负荷量的4%~12%,水厂输出占2%~3%左右;约41%~74%的总磷负荷量滞留于太湖湖体中,成为影响太湖总磷浓度的重要内源。同时,太湖地区气温升高、太湖水体流动速度加快一定程度上又加速了内源污染释放,使其成为总磷改善的限制性因素。;Phosphorus is the main indicator of eutrophication in Lake Taihu. In order to understand the trends and characteristics of the internal and external total phosphorus (TP) load in Lake Taihu, the main sources of TP in the lake and the reasons for the high fluctuation of TP concentration were analysed from the dynamic equilibrium of TP pollution load. The mass balance of TP load in different ways into and out of the lake was estimated and analysed based on a long series of water quality monitoring data. The results showed that the input TP load of rivers was about 1835-2799 t during 2007-2020 as the main source, accounting for 55%-73% of the TP load in Lake Taihu. The TP load transported by dry and wet deposition was 353-1380t, which accounted for about 12%-38% and was the second largest input pathway of TP load in Lake Taihu. Meanwhile, 8%-15% of the TP load was retained in the water of Lake Taihu. However, the TP discharged from the outlet river was about 516-906 t, accounting for about 13%-30% of the TP load in Lake Taihu; the TP removal by harvesting aquatic animals and plants was 115-312 t, accounting for 4%-12% of the TP load in Lake Taihu; and the percentage of TP output by drinking water extraction was about 2%-3%. Therefore, about 41%-74% of the TP load remained in the lake, which is an important endogenous factor influencing the epilimnetic TP concentration in Lake Taihu. In addition, the increase in temperature and water flow velocity in Lake Taihu had both accelerated the release of TP from sediment into water, resulting in sediment being one of the limiting factors for TP control.","PeriodicalId":37454,"journal":{"name":"湖泊科学","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"湖泊科学","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18307/2023.0520","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Earth and Planetary Sciences","Score":null,"Total":0}
引用次数: 0

Abstract

磷是太湖富营养化的关键性指标,为了解太湖总磷内、外源变化趋势及特征,从总磷污染负荷动态平衡角度分析太湖总磷主要来源与总磷浓度高位波动的原因,本研究基于2007年以来长时序水量水质监测资料和调查数据,开展了太湖进出各途径的总磷负荷质量平衡估算及分析。结果表明,2007—2020年入湖河道输入总磷负荷为1835~2799 t,占太湖总磷负荷的55%~73%,是外源输入最主要的途径;大气干湿沉降输入353~1380 t,占太湖总磷负荷量的12%~38%,是太湖总磷外源输入的第二大途径;太湖水体中总磷负荷量约占8%~15%。出湖河道输出总磷负荷量为516~906 t,占太湖总磷负荷量的13%~30%;水生动植物捕捞总磷负荷量为115~312 t,占太湖总磷负荷量的4%~12%,水厂输出占2%~3%左右;约41%~74%的总磷负荷量滞留于太湖湖体中,成为影响太湖总磷浓度的重要内源。同时,太湖地区气温升高、太湖水体流动速度加快一定程度上又加速了内源污染释放,使其成为总磷改善的限制性因素。;Phosphorus is the main indicator of eutrophication in Lake Taihu. In order to understand the trends and characteristics of the internal and external total phosphorus (TP) load in Lake Taihu, the main sources of TP in the lake and the reasons for the high fluctuation of TP concentration were analysed from the dynamic equilibrium of TP pollution load. The mass balance of TP load in different ways into and out of the lake was estimated and analysed based on a long series of water quality monitoring data. The results showed that the input TP load of rivers was about 1835-2799 t during 2007-2020 as the main source, accounting for 55%-73% of the TP load in Lake Taihu. The TP load transported by dry and wet deposition was 353-1380t, which accounted for about 12%-38% and was the second largest input pathway of TP load in Lake Taihu. Meanwhile, 8%-15% of the TP load was retained in the water of Lake Taihu. However, the TP discharged from the outlet river was about 516-906 t, accounting for about 13%-30% of the TP load in Lake Taihu; the TP removal by harvesting aquatic animals and plants was 115-312 t, accounting for 4%-12% of the TP load in Lake Taihu; and the percentage of TP output by drinking water extraction was about 2%-3%. Therefore, about 41%-74% of the TP load remained in the lake, which is an important endogenous factor influencing the epilimnetic TP concentration in Lake Taihu. In addition, the increase in temperature and water flow velocity in Lake Taihu had both accelerated the release of TP from sediment into water, resulting in sediment being one of the limiting factors for TP control.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
2007年以来基于质量平衡的太湖总磷污染负荷计算与分析
磷是太湖富营养化的关键性指标,为了解太湖总磷内、外源变化趋势及特征,从总磷污染负荷动态平衡角度分析太湖总磷主要来源与总磷浓度高位波动的原因,本研究基于2007年以来长时序水量水质监测资料和调查数据,开展了太湖进出各途径的总磷负荷质量平衡估算及分析。结果表明,2007—2020年入湖河道输入总磷负荷为1835~2799 t,占太湖总磷负荷的55%~73%,是外源输入最主要的途径;大气干湿沉降输入353~1380 t,占太湖总磷负荷量的12%~38%,是太湖总磷外源输入的第二大途径;太湖水体中总磷负荷量约占8%~15%。出湖河道输出总磷负荷量为516~906 t,占太湖总磷负荷量的13%~30%;水生动植物捕捞总磷负荷量为115~312 t,占太湖总磷负荷量的4%~12%,水厂输出占2%~3%左右;约41%~74%的总磷负荷量滞留于太湖湖体中,成为影响太湖总磷浓度的重要内源。同时,太湖地区气温升高、太湖水体流动速度加快一定程度上又加速了内源污染释放,使其成为总磷改善的限制性因素。;Phosphorus is the main indicator of eutrophication in Lake Taihu. In order to understand the trends and characteristics of the internal and external total phosphorus (TP) load in Lake Taihu, the main sources of TP in the lake and the reasons for the high fluctuation of TP concentration were analysed from the dynamic equilibrium of TP pollution load. The mass balance of TP load in different ways into and out of the lake was estimated and analysed based on a long series of water quality monitoring data. The results showed that the input TP load of rivers was about 1835-2799 t during 2007-2020 as the main source, accounting for 55%-73% of the TP load in Lake Taihu. The TP load transported by dry and wet deposition was 353-1380t, which accounted for about 12%-38% and was the second largest input pathway of TP load in Lake Taihu. Meanwhile, 8%-15% of the TP load was retained in the water of Lake Taihu. However, the TP discharged from the outlet river was about 516-906 t, accounting for about 13%-30% of the TP load in Lake Taihu; the TP removal by harvesting aquatic animals and plants was 115-312 t, accounting for 4%-12% of the TP load in Lake Taihu; and the percentage of TP output by drinking water extraction was about 2%-3%. Therefore, about 41%-74% of the TP load remained in the lake, which is an important endogenous factor influencing the epilimnetic TP concentration in Lake Taihu. In addition, the increase in temperature and water flow velocity in Lake Taihu had both accelerated the release of TP from sediment into water, resulting in sediment being one of the limiting factors for TP control.
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
湖泊科学
湖泊科学 Environmental Science-Water Science and Technology
CiteScore
3.70
自引率
0.00%
发文量
3253
期刊介绍:
期刊最新文献
Collision Tumour of Combined Neuroendocrine and Squamous Cell Carcinoma of Nasal Cavity and Paranasal Sinus- Case Report and Review of Literature. Research progress on key processes of nitrogen cycling under soil-plant-microbial interactions in the water-level-fluctuation zone of the Three Gorges Reservoir Water and sediment changes and the eco-environment response characteristics in Three Gorges Reservoir after the impoundment Monitoring and analysis of CO2 and CH4 fluxes in the Three Gorges Reservoir Flux and form of phosphorus in overlying water at the effluent section of the Three Gorges Reservoir from 1998 to 2019
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1