Stochastic Reachability-Based GPS Spoofing Detection with Chimera Signal Enhancement

IF 2 3区 地球科学 Q1 ENGINEERING, AEROSPACE Navigation-Journal of the Institute of Navigation Pub Date : 2023-01-01 DOI:10.33012/navi.616
Tara Mina, Ashwin Kanhere, Shreyas Kousik,, Grace Gao
{"title":"Stochastic Reachability-Based GPS Spoofing Detection with Chimera Signal Enhancement","authors":"Tara Mina, Ashwin Kanhere, Shreyas Kousik,, Grace Gao","doi":"10.33012/navi.616","DOIUrl":null,"url":null,"abstract":"To provide secure navigation for civilian global positioning system (GPS) users, the Air Force Research Lab (AFRL) has developed the chips-message robust authentication (Chimera) (Anderson et al., 2017) signal enhancement for the GPS L1C signal (GPS Directorate, 2022). Chimera inserts a digital signature within both the navigation message and the pilot channels of L1C to allow civilian users to jointly authenticate both components of the signal (AFRL Space Vehicles Directorate, Advanced GPS Technology, 2019). The AFRL will broadcast and test this signal enhancement on the upcoming Navigation Technology Satellite 3 experimental platform, which will be launched in 2024 (Cozzens, 2021; Divis, 2019, AFRL, 2023). If incorporated within the GPS L1C signal, the Chimera enhancement will be the Abstract To protect civilian global positioning system (GPS) users from spoofing attacks, the U.S. Air Force Research Lab has proposed the chips-message robust authentication (Chimera) enhancement for the L1C signal. In particular, the Chimera fast channel allows users to authenticate the received GPS signal once every 1.5 or 6 s, depending on the out-of-band source utilized for receiving the fast channel marker keys. However, for many moving receiver applications, receivers often use much higher GPS measurement rates, at 5–20 Hz. In this work, we derive a stochastic reachability (SR)-based detector to perform continuous GPS signal verification and state estimation between Chimera authentications. Our SR detector validates the received GPS measurement against any self-contained sensor, such as an inertial measurement unit, in the presence of bounded biases in the sensor error distributions. We demonstrate via Monte Carlo simulations that our detector satisfies a user-defined false alarm requirement during nominal conditions, while successfully detecting a simulated spoofing attack. We further demonstrate that our SR state estimation filter successfully bounds the true state during both authentic and spoofed conditions.","PeriodicalId":56075,"journal":{"name":"Navigation-Journal of the Institute of Navigation","volume":"17 1","pages":"0"},"PeriodicalIF":2.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Navigation-Journal of the Institute of Navigation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.33012/navi.616","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
引用次数: 0

Abstract

To provide secure navigation for civilian global positioning system (GPS) users, the Air Force Research Lab (AFRL) has developed the chips-message robust authentication (Chimera) (Anderson et al., 2017) signal enhancement for the GPS L1C signal (GPS Directorate, 2022). Chimera inserts a digital signature within both the navigation message and the pilot channels of L1C to allow civilian users to jointly authenticate both components of the signal (AFRL Space Vehicles Directorate, Advanced GPS Technology, 2019). The AFRL will broadcast and test this signal enhancement on the upcoming Navigation Technology Satellite 3 experimental platform, which will be launched in 2024 (Cozzens, 2021; Divis, 2019, AFRL, 2023). If incorporated within the GPS L1C signal, the Chimera enhancement will be the Abstract To protect civilian global positioning system (GPS) users from spoofing attacks, the U.S. Air Force Research Lab has proposed the chips-message robust authentication (Chimera) enhancement for the L1C signal. In particular, the Chimera fast channel allows users to authenticate the received GPS signal once every 1.5 or 6 s, depending on the out-of-band source utilized for receiving the fast channel marker keys. However, for many moving receiver applications, receivers often use much higher GPS measurement rates, at 5–20 Hz. In this work, we derive a stochastic reachability (SR)-based detector to perform continuous GPS signal verification and state estimation between Chimera authentications. Our SR detector validates the received GPS measurement against any self-contained sensor, such as an inertial measurement unit, in the presence of bounded biases in the sensor error distributions. We demonstrate via Monte Carlo simulations that our detector satisfies a user-defined false alarm requirement during nominal conditions, while successfully detecting a simulated spoofing attack. We further demonstrate that our SR state estimation filter successfully bounds the true state during both authentic and spoofed conditions.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于随机可达性的嵌合体信号增强GPS欺骗检测
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Navigation-Journal of the Institute of Navigation
Navigation-Journal of the Institute of Navigation ENGINEERING, AEROSPACE-REMOTE SENSING
CiteScore
5.60
自引率
13.60%
发文量
31
期刊介绍: NAVIGATION is a quarterly journal published by The Institute of Navigation. The journal publishes original, peer-reviewed articles on all areas related to the science, engineering and art of Positioning, Navigation and Timing (PNT) covering land (including indoor use), sea, air and space applications. PNT technologies of interest encompass navigation satellite systems (both global and regional), inertial navigation, electro-optical systems including LiDAR and imaging sensors, and radio-frequency ranging and timing systems, including those using signals of opportunity from communication systems and other non-traditional PNT sources. Articles about PNT algorithms and methods, such as for error characterization and mitigation, integrity analysis, PNT signal processing and multi-sensor integration, are welcome. The journal also accepts articles on non-traditional applications of PNT systems, including remote sensing of the Earth’s surface or atmosphere, as well as selected historical and survey articles.
期刊最新文献
Atom Strapdown: Toward Integrated Quantum Inertial Navigation Systems Navigation Safety Assurance of a KF-Based GNSS/IMU System: Protection Levels Against IMU Failure PRN Sequence Estimation with a Self-Calibrating 40-Element Antenna Array Preliminary Analysis of BDS-3 Performance for ARAIM Development and Validation of a Multipath Mitigation Technique Using Multi-Correlator Structures
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1