Isabelle Bunge, Adam Sobel, Michela Biasutti, Shuguang Wang
{"title":"Variable Rainfall over Steady SST: The Effect of the Free Troposphere on Surface Pressure in the East Pacific","authors":"Isabelle Bunge, Adam Sobel, Michela Biasutti, Shuguang Wang","doi":"10.1175/jas-d-23-0101.1","DOIUrl":null,"url":null,"abstract":"Abstract Surface winds and precipitation over the tropical oceans are related to sea surface temperature (SST) through multiple mechanisms. Greater SST is associated with greater conditional instability, which in turn is more conducive to deep convection. The associated mass and flow responses can extend to the surface, via associated pressure gradients imprinted on the top of the planetary boundary layer (PBL). SST also influences surface pressure and wind directly through its control over PBL temperature, as explained by Lindzen and Nigam (1987). The authors examine the relative magnitudes of these two influences over the eastern tropical Pacific on subseasonal precipitation variability during northern summer, when and where SST gradients are largest and the direct influence via PBL temperature is expected to be strongest. Geopotential at 1000 hPa is partitioned into two components: the geopotential at PBL top (PBL top is chosen to be 850 hPa, supported by an analysis of the vertical structure of geopotential and temperature), and the PBL thickness. These fields are composited on quintiles of daily ITCZ precipitation both with and without a high-pass filter that isolates subseasonal timescales. The PBL thickness varies little between the highest and lowest precipitation quintiles, while the PBL top geopotential varies much more. This supports a view in which the direct contribution of SST to the surface pressure and flow fields, including the associated PBL convergence over sharp SST maxima, can be viewed as a steady forcing on the rest of the column, while free-tropospheric transients contribute most of the variability associated with precipitation on subseasonal timescales.","PeriodicalId":17231,"journal":{"name":"Journal of the Atmospheric Sciences","volume":"6 1","pages":"0"},"PeriodicalIF":3.0000,"publicationDate":"2023-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Atmospheric Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1175/jas-d-23-0101.1","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract Surface winds and precipitation over the tropical oceans are related to sea surface temperature (SST) through multiple mechanisms. Greater SST is associated with greater conditional instability, which in turn is more conducive to deep convection. The associated mass and flow responses can extend to the surface, via associated pressure gradients imprinted on the top of the planetary boundary layer (PBL). SST also influences surface pressure and wind directly through its control over PBL temperature, as explained by Lindzen and Nigam (1987). The authors examine the relative magnitudes of these two influences over the eastern tropical Pacific on subseasonal precipitation variability during northern summer, when and where SST gradients are largest and the direct influence via PBL temperature is expected to be strongest. Geopotential at 1000 hPa is partitioned into two components: the geopotential at PBL top (PBL top is chosen to be 850 hPa, supported by an analysis of the vertical structure of geopotential and temperature), and the PBL thickness. These fields are composited on quintiles of daily ITCZ precipitation both with and without a high-pass filter that isolates subseasonal timescales. The PBL thickness varies little between the highest and lowest precipitation quintiles, while the PBL top geopotential varies much more. This supports a view in which the direct contribution of SST to the surface pressure and flow fields, including the associated PBL convergence over sharp SST maxima, can be viewed as a steady forcing on the rest of the column, while free-tropospheric transients contribute most of the variability associated with precipitation on subseasonal timescales.
期刊介绍:
The Journal of the Atmospheric Sciences (JAS) publishes basic research related to the physics, dynamics, and chemistry of the atmosphere of Earth and other planets, with emphasis on the quantitative and deductive aspects of the subject.
The links provide detailed information for readers, authors, reviewers, and those who wish to submit a manuscript for consideration.