Trajectory reconstruction by means of an event-camera-based visual odometry method and machine learned features

S. Chiodini
{"title":"Trajectory reconstruction by means of an event-camera-based visual odometry method and machine learned features","authors":"S. Chiodini","doi":"10.21741/9781644902813-150","DOIUrl":null,"url":null,"abstract":"Abstract. This paper presents a machine learned feature detector targeted to event-camera based visual odometry methods for unmanned aerial vehicles trajectory reconstruction. The proposed method uses machine-learned features to enhance the accuracy of the trajectory reconstruction. Traditional visual odometry methods suffer from poor performance in low light conditions and high-speed motion. The event-camera-based approach overcomes these limitations by detecting and processing only the changes in the visual scene. The machine-learned features are crafted to capture the unique characteristics of the event-camera data, enhancing the accuracy of the trajectory reconstruction. The inference pipeline is composed of a module repeated twice in sequence, formed by a Squeeze-and-Excite block and a ConvLSTM block with residual connection; it is followed by a final convolutional layer that provides the trajectories of the corners as a sequence of heatmaps. In the experimental part, a sequence of images was collected using an event-camera in outdoor environments for training and test.","PeriodicalId":87445,"journal":{"name":"Materials Research Society symposia proceedings. Materials Research Society","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Research Society symposia proceedings. Materials Research Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21741/9781644902813-150","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract. This paper presents a machine learned feature detector targeted to event-camera based visual odometry methods for unmanned aerial vehicles trajectory reconstruction. The proposed method uses machine-learned features to enhance the accuracy of the trajectory reconstruction. Traditional visual odometry methods suffer from poor performance in low light conditions and high-speed motion. The event-camera-based approach overcomes these limitations by detecting and processing only the changes in the visual scene. The machine-learned features are crafted to capture the unique characteristics of the event-camera data, enhancing the accuracy of the trajectory reconstruction. The inference pipeline is composed of a module repeated twice in sequence, formed by a Squeeze-and-Excite block and a ConvLSTM block with residual connection; it is followed by a final convolutional layer that provides the trajectories of the corners as a sequence of heatmaps. In the experimental part, a sequence of images was collected using an event-camera in outdoor environments for training and test.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用基于事件摄像机的视觉里程计方法和机器学习特征进行轨迹重建
摘要提出了一种针对基于事件相机的无人机轨迹重建视觉里程计方法的机器学习特征检测器。该方法利用机器学习特征来提高轨迹重建的精度。传统的视觉里程计方法在弱光条件下和高速运动中表现不佳。基于事件摄像机的方法通过仅检测和处理视觉场景中的变化来克服这些限制。机器学习的特征是为了捕捉事件相机数据的独特特征,提高轨迹重建的准确性。推理管道由一个按顺序重复两次的模块组成,该模块由一个Squeeze-and-Excite块和一个带有剩余连接的ConvLSTM块组成;接下来是最后一个卷积层,它提供角的轨迹作为一系列热图。实验部分采用事件相机在室外环境下采集一系列图像进行训练和测试。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Impact of a wedge in water: assessment of the modeling keyword, presence of cavitation and choice of the filter most suitable for the case study Hybrid graph-clothoid based path planning for a fixed wing aircraft Trajectory optimization and multiple-sliding-surface terminal guidance in the lifting atmospheric reentry An energy-based design approach in the aero-structural optimization of a morphing aileron Feasibility analysis of a CubeSat mission for space rider observation and docking
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1