CONTROL APPROACH OF A GRID CONNECTED DFIG BASED WIND TURBINE USING MPPT AND PI CONTROLLER

IF 0.5 Q4 ENGINEERING, ELECTRICAL & ELECTRONIC Advances in Electrical and Electronic Engineering Pub Date : 2023-09-28 DOI:10.15598/aeee.v21i3.5149
Samatar ABDI YONIS, Ziyodulla YUSUPOV, Adib HABBAL, Olimjon TOIROV
{"title":"CONTROL APPROACH OF A GRID CONNECTED DFIG BASED WIND TURBINE USING MPPT AND PI CONTROLLER","authors":"Samatar ABDI YONIS, Ziyodulla YUSUPOV, Adib HABBAL, Olimjon TOIROV","doi":"10.15598/aeee.v21i3.5149","DOIUrl":null,"url":null,"abstract":". A double-fed induction generator (DFIG) has been frequently utilized in wind turbines due to its ability to handle variable-speed operations. This study investigates the real parameters of the Mitsubishi MWT 92/2.4 MW wind turbine model. It performs and implements grid-connected variable-speed turbines to control the active and reactive powers. Moreover, it presents a vector control strategy for DFIG for controlling the generated stator power. The unique feature of the approach proposed in the study is the comparison between two control techniques - the Maximum Power Point Tracking (MPPT) algorithm and the Proportional-Integral (PI) controller - for regulating DFIG based wind turbine systems. Thus, the result demonstrates that the performance of the MPPT technique provides strong robustness and reaches steady-state much faster than the PI controller with variable parameters. To the contrary, a typical PI controller gives a fast response when tracking the references of DFIG magnitudes. The effectiveness of the overall sys-tem is tested by MATLAB simulation.","PeriodicalId":7268,"journal":{"name":"Advances in Electrical and Electronic Engineering","volume":"25 1","pages":"0"},"PeriodicalIF":0.5000,"publicationDate":"2023-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Electrical and Electronic Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15598/aeee.v21i3.5149","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

. A double-fed induction generator (DFIG) has been frequently utilized in wind turbines due to its ability to handle variable-speed operations. This study investigates the real parameters of the Mitsubishi MWT 92/2.4 MW wind turbine model. It performs and implements grid-connected variable-speed turbines to control the active and reactive powers. Moreover, it presents a vector control strategy for DFIG for controlling the generated stator power. The unique feature of the approach proposed in the study is the comparison between two control techniques - the Maximum Power Point Tracking (MPPT) algorithm and the Proportional-Integral (PI) controller - for regulating DFIG based wind turbine systems. Thus, the result demonstrates that the performance of the MPPT technique provides strong robustness and reaches steady-state much faster than the PI controller with variable parameters. To the contrary, a typical PI controller gives a fast response when tracking the references of DFIG magnitudes. The effectiveness of the overall sys-tem is tested by MATLAB simulation.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于MPPT和PI控制器的并网风电机组控制方法
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Advances in Electrical and Electronic Engineering
Advances in Electrical and Electronic Engineering ENGINEERING, ELECTRICAL & ELECTRONIC-
CiteScore
1.30
自引率
33.30%
发文量
30
审稿时长
25 weeks
期刊最新文献
Experimental Verification of a Regenerative Braking System with an SOC Based Energy Management System for an E-Rickshaw Motor MICRO-INVERTER BASED on SYMMETRICAL BOOST-DISCHARGE TOPOLOGY for PHOTOVOLTAIC ENERGY SOURCE DESIGN OF DEEP LEARNING MODEL APPLIED FOR SMART PARKING SYSTEM MULTIPLE-INPUT SINGLE-OUTPUT VOLTAGE-MODE MULTIFUNCTION FILTER BASED ON VDDDAS Identification of Open-Circuit Faults in T-Type Inverters Using Fuzzy Logic Approach
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1