Numerical assessment of temperature and stresses in friction stir welding of dissimilar Mg-Al-Zn alloys

IF 1.3 Q3 ENGINEERING, MECHANICAL Australian Journal of Mechanical Engineering Pub Date : 2023-09-28 DOI:10.1080/14484846.2023.2259725
Umesh Kumar Singh, Avanish Kumar Dubey
{"title":"Numerical assessment of temperature and stresses in friction stir welding of dissimilar Mg-Al-Zn alloys","authors":"Umesh Kumar Singh, Avanish Kumar Dubey","doi":"10.1080/14484846.2023.2259725","DOIUrl":null,"url":null,"abstract":"ABSTRACTMagnesium (Mg) alloys are used more frequently as a replacement for heavier structural materials because of their advantageous specific strength and eco-friendly attributes. Their fusion welding is a difficult process, but the friction stir welding (FSW) offers a potential solution to these issues. In this study, a thermal analysis is carried out to obtain the temperature distribution and residual stresses related to FSW of different Mg-Al-Zn series Mg alloys under different processing conditions. The highest temperature recorded at the centre of the weld was 544.04°C, while the average von Mises stress during welding was 185.07 MPa. These values were achieved with a tool rotational speed of 1000 rpm, welding speed of 40 mm/min, and a tool shoulder diameter of 21 mm. The temperatures obtained through the numerical model were validated by comparing them with experimental data. During the experimental analysis, small cracks were observed at the centre of the welded joint, resulting from the formation of MgO. The welded joint exhibited a maximum tensile strength of 234.86 MPa, which is approximately 90% of the stronger AZ31 Mg alloy.KEYWORDS: Dissimilar magnesium alloystemperatureresidual stressesmicrostructuretensile strengthfriction stir weldingthermal analysis AcknowledgementsAuthors would like to acknowledge the research assistantship provided by UGC New Delhi, India, and MNNIT Allahabad, Prayagraj, U.P., India (under TEQIP-III scheme).Disclosure statementNo potential conflict of interest was reported by the author(s).Additional informationNotes on contributorsUmesh Kumar SinghUmesh Kumar Singh earned his M.Tech. and Ph.D. from Motilal Nehru National Institute of Technology Allahabad, Prayagraj (Uttar Pradesh), India. He has published research articles in various refereed International Journals and Conferences. His are of research is Friction Stir Welding.Avanish Kumar DubeyAvanish Kumar Dubey earned his M.Tech. and Ph.D. from Motilal Nehru National Institute of Technology Allahabad, Prayagraj (Uttar Pradesh), India. He has published many research articles in various refereed International and National Journals and Conferences. Currently, he is working as a Professor in the Department of Mechanical Engineering, Motilal Nehru National Institute of Technology Allahabad, Prayagraj (Uttar Pradesh), India. His areas of interests are Laser Material Processing and Advanced Manufacturing Processes, Modeling and Optimization of Manufacturing Processes.","PeriodicalId":8584,"journal":{"name":"Australian Journal of Mechanical Engineering","volume":"129 1","pages":"0"},"PeriodicalIF":1.3000,"publicationDate":"2023-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Australian Journal of Mechanical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/14484846.2023.2259725","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

Abstract

ABSTRACTMagnesium (Mg) alloys are used more frequently as a replacement for heavier structural materials because of their advantageous specific strength and eco-friendly attributes. Their fusion welding is a difficult process, but the friction stir welding (FSW) offers a potential solution to these issues. In this study, a thermal analysis is carried out to obtain the temperature distribution and residual stresses related to FSW of different Mg-Al-Zn series Mg alloys under different processing conditions. The highest temperature recorded at the centre of the weld was 544.04°C, while the average von Mises stress during welding was 185.07 MPa. These values were achieved with a tool rotational speed of 1000 rpm, welding speed of 40 mm/min, and a tool shoulder diameter of 21 mm. The temperatures obtained through the numerical model were validated by comparing them with experimental data. During the experimental analysis, small cracks were observed at the centre of the welded joint, resulting from the formation of MgO. The welded joint exhibited a maximum tensile strength of 234.86 MPa, which is approximately 90% of the stronger AZ31 Mg alloy.KEYWORDS: Dissimilar magnesium alloystemperatureresidual stressesmicrostructuretensile strengthfriction stir weldingthermal analysis AcknowledgementsAuthors would like to acknowledge the research assistantship provided by UGC New Delhi, India, and MNNIT Allahabad, Prayagraj, U.P., India (under TEQIP-III scheme).Disclosure statementNo potential conflict of interest was reported by the author(s).Additional informationNotes on contributorsUmesh Kumar SinghUmesh Kumar Singh earned his M.Tech. and Ph.D. from Motilal Nehru National Institute of Technology Allahabad, Prayagraj (Uttar Pradesh), India. He has published research articles in various refereed International Journals and Conferences. His are of research is Friction Stir Welding.Avanish Kumar DubeyAvanish Kumar Dubey earned his M.Tech. and Ph.D. from Motilal Nehru National Institute of Technology Allahabad, Prayagraj (Uttar Pradesh), India. He has published many research articles in various refereed International and National Journals and Conferences. Currently, he is working as a Professor in the Department of Mechanical Engineering, Motilal Nehru National Institute of Technology Allahabad, Prayagraj (Uttar Pradesh), India. His areas of interests are Laser Material Processing and Advanced Manufacturing Processes, Modeling and Optimization of Manufacturing Processes.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
不同Mg-Al-Zn合金搅拌摩擦焊接温度和应力的数值计算
摘要镁合金因其优越的比强度和环保特性,越来越多地被用作较重的结构材料的替代品。它们的熔焊是一个困难的过程,但搅拌摩擦焊(FSW)提供了一个潜在的解决方案。本研究对不同Mg- al - zn系镁合金在不同加工条件下的摩擦摩擦相关温度分布和残余应力进行了热分析。焊缝中心记录的最高温度为544.04℃,焊接过程中的平均von Mises应力为185.07 MPa。这些值是在刀具转速为1000 rpm,焊接速度为40 mm/min,工具肩直径为21 mm的情况下实现的。通过与实验数据的比较,验证了数值模型所得温度的正确性。在实验分析中,在焊接接头中心观察到细小的裂纹,这是由MgO的形成引起的。焊接接头的最大抗拉强度为234.86 MPa,约为强AZ31镁合金的90%。关键词:异种镁合金,系统温度,残余应力,显微组织,拉伸强度,搅拌摩擦焊接,热分析。作者感谢UGC新德里,印度和MNNIT阿拉哈巴德,Prayagraj, U.P,印度(TEQIP-III计划下)提供的研究资助。披露声明作者未报告潜在的利益冲突。关于贡献者的说明humesh Kumar Singh获得了他的M.Tech。毕业于印度Prayagraj (Uttar Pradesh)阿拉哈巴德的Motilal Nehru国立理工学院。他在各种国际期刊和会议上发表了研究论文。他的研究方向是搅拌摩擦焊。Avanish Kumar Dubey获得了技术硕士学位。毕业于印度Prayagraj (Uttar Pradesh)阿拉哈巴德的Motilal Nehru国立理工学院。他在各种国际和国家期刊和会议上发表了许多研究文章。目前,他在印度Prayagraj (Uttar Pradesh)阿拉哈巴德的Motilal Nehru国立理工学院机械工程系担任教授。他的兴趣领域是激光材料加工和先进制造工艺,制造工艺建模和优化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
3.70
自引率
7.10%
发文量
77
期刊最新文献
Research on the control strategy of coning amount and ASU adjustment considering profile and high-order flatness cooperative control A critical exploratory investigation on nano-inspired (La 2 Zr 2 O 7 NPs) surface coatings for aircraft icing mitigation and electrochemical studies Multi-body dynamic modelling and simulations for train crashworthiness design analysis Flow characteristics of gold nanoparticles and microorganisms in a multistenotic artery treated with a catheter Experimental and numerical study of fatigue life for Aluminum Composite Panel (ACP) under the ranges of wind speed effect
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1