Matthew Jenkins, Autumn Mannsfeld, Shayla Nikzad, Jean-Jacques Lambert, Konrad Miller, Mark Burns, J. Mason Earles, David E. Block
{"title":"Novel algorithms for high-resolution prediction of canopy evapotranspiration in grapevine","authors":"Matthew Jenkins, Autumn Mannsfeld, Shayla Nikzad, Jean-Jacques Lambert, Konrad Miller, Mark Burns, J. Mason Earles, David E. Block","doi":"10.20870/oeno-one.2023.57.3.7251","DOIUrl":null,"url":null,"abstract":"Developing low-cost technology for custom water delivery to individual or small groups of plants is a critical next step to advance precision irrigation. Current systems for estimating evapotranspiration (ET), or plant water use, work on the scale of a full vineyard (e.g., 3–5 acres) or the scale of a single vine, but at a cost that prohibits monitoring past a small number of representative vines. To develop and evaluate low-cost ET sensors for individual grapevines, we used three head-pruned Zinfandel vines in pots and placed them on load cells to collect continuous weights indicative of actual ET. We mounted research-grade sensors for humidity, temperature, and wind speed on each vine and saved data at 2-minute intervals during three growing seasons. We developed three models based on first principles (Convective Mass Transfer or Mass Balance approaches) or simple correlations to predict actual single-plant ET from these data. We present here the results of a multi-year trial at the UC-Davis RMI vineyard to illustrate the performance of each of the models for ET estimation. Relative model performance was assessed by comparing model predictions to ground truth data provided by measurements from load cells–including assessments of estimated instantaneous ET rate, estimated cumulative water use over a one-hour window surrounding solar noon, and estimated cumulative water use over a full 24-hour period. The three algorithms developed consistently performed well, with single vine ET rate predictions showing a strong linear relationship with ground truth (range in r2 over three seasons CMT r2 = 0.61–0.86; MB r2 = 0.07–0.91; EM r2 = 0.57–0.92). The MB approach, which includes two measurements of relative humidity and temperature, was the most variable, likely due to the impact of sensor placement. In all seasons, we also examined the trend in the plant scaling factor found in each model, deemed As, which, based on model theory, is a function of vine size. Taken together, these results suggest that high-resolution irrigation (HRI) models are a promising new method for ET estimation at the single plant level.","PeriodicalId":19510,"journal":{"name":"OENO One","volume":"52 1","pages":"0"},"PeriodicalIF":2.2000,"publicationDate":"2023-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"OENO One","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.20870/oeno-one.2023.57.3.7251","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 1
Abstract
Developing low-cost technology for custom water delivery to individual or small groups of plants is a critical next step to advance precision irrigation. Current systems for estimating evapotranspiration (ET), or plant water use, work on the scale of a full vineyard (e.g., 3–5 acres) or the scale of a single vine, but at a cost that prohibits monitoring past a small number of representative vines. To develop and evaluate low-cost ET sensors for individual grapevines, we used three head-pruned Zinfandel vines in pots and placed them on load cells to collect continuous weights indicative of actual ET. We mounted research-grade sensors for humidity, temperature, and wind speed on each vine and saved data at 2-minute intervals during three growing seasons. We developed three models based on first principles (Convective Mass Transfer or Mass Balance approaches) or simple correlations to predict actual single-plant ET from these data. We present here the results of a multi-year trial at the UC-Davis RMI vineyard to illustrate the performance of each of the models for ET estimation. Relative model performance was assessed by comparing model predictions to ground truth data provided by measurements from load cells–including assessments of estimated instantaneous ET rate, estimated cumulative water use over a one-hour window surrounding solar noon, and estimated cumulative water use over a full 24-hour period. The three algorithms developed consistently performed well, with single vine ET rate predictions showing a strong linear relationship with ground truth (range in r2 over three seasons CMT r2 = 0.61–0.86; MB r2 = 0.07–0.91; EM r2 = 0.57–0.92). The MB approach, which includes two measurements of relative humidity and temperature, was the most variable, likely due to the impact of sensor placement. In all seasons, we also examined the trend in the plant scaling factor found in each model, deemed As, which, based on model theory, is a function of vine size. Taken together, these results suggest that high-resolution irrigation (HRI) models are a promising new method for ET estimation at the single plant level.
OENO OneAgricultural and Biological Sciences-Food Science
CiteScore
4.40
自引率
13.80%
发文量
85
审稿时长
13 weeks
期刊介绍:
OENO One is a peer-reviewed journal that publishes original research, reviews, mini-reviews, short communications, perspectives and spotlights in the areas of viticulture, grapevine physiology, genomics and genetics, oenology, winemaking technology and processes, wine chemistry and quality, analytical chemistry, microbiology, sensory and consumer sciences, safety and health. OENO One belongs to the International Viticulture and Enology Society - IVES, an academic association dedicated to viticulture and enology.