Hao Yang, Duoyang Qiu, Zhiyuan Fang, Yalin Hu, Fei Ming
{"title":"LiDAR technology and experimental research for comprehensive measurement of atmospheric transmittance, turbulence, and wind","authors":"Hao Yang, Duoyang Qiu, Zhiyuan Fang, Yalin Hu, Fei Ming","doi":"10.1117/1.jrs.18.012002","DOIUrl":null,"url":null,"abstract":"Atmospheric transmittance, turbulence, and wind play a crucial role in the field of laser atmospheric transmission. In response to the demand for comprehensive detection of atmospheric optical parameters, a LiDAR system for comprehensive measurement of atmospheric transmittance, turbulence, and wind (ACW-LiDAR) has been developed through integrated optical and mechanical design. The remote sensing measurement of atmospheric transmittance, turbulence, and wind simultaneously and along a common path has been realized by the ACW-LiDAR. By proposing a limb scanning algorithm, the problem of preference for atmospheric transmittance estimation has been overcome, and the problem of inconvenient turbulence measurement at near-surface has been effectively solved. It is also possible to obtain wind information on the laser transmission route. The experimental results based on the ACW-LiDAR system indicate that the detection distance of atmospheric transmittance is greater than 10 km @ 1064 nm. The detection distance of turbulence is greater than 10 km @ 532 nm. The detection distance of wind is greater than 4 km @ 1550 nm. The comparison between the ACW-LiDAR system and the ground meteorological automatic observation system shows that the variation trend in extinction coefficient, turbulence, and radial wind velocity is consistent, with a correlation better than 0.69, verifying the accuracy of the developed ACW-LiDAR system. The analysis of comprehensive scanning detection indicates that the three key atmospheric parameters mentioned above are interrelated and mutually influencing. So the measurement of the same time and common path of atmospheric transmittance, turbulence, and wind is of great significance. These can provide a theoretical and experimental basis for long-term observation and accumulation of atmospheric parameters, as well as the correction of atmospheric parameters.","PeriodicalId":54879,"journal":{"name":"Journal of Applied Remote Sensing","volume":"2016 1","pages":"0"},"PeriodicalIF":1.4000,"publicationDate":"2023-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Remote Sensing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/1.jrs.18.012002","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Atmospheric transmittance, turbulence, and wind play a crucial role in the field of laser atmospheric transmission. In response to the demand for comprehensive detection of atmospheric optical parameters, a LiDAR system for comprehensive measurement of atmospheric transmittance, turbulence, and wind (ACW-LiDAR) has been developed through integrated optical and mechanical design. The remote sensing measurement of atmospheric transmittance, turbulence, and wind simultaneously and along a common path has been realized by the ACW-LiDAR. By proposing a limb scanning algorithm, the problem of preference for atmospheric transmittance estimation has been overcome, and the problem of inconvenient turbulence measurement at near-surface has been effectively solved. It is also possible to obtain wind information on the laser transmission route. The experimental results based on the ACW-LiDAR system indicate that the detection distance of atmospheric transmittance is greater than 10 km @ 1064 nm. The detection distance of turbulence is greater than 10 km @ 532 nm. The detection distance of wind is greater than 4 km @ 1550 nm. The comparison between the ACW-LiDAR system and the ground meteorological automatic observation system shows that the variation trend in extinction coefficient, turbulence, and radial wind velocity is consistent, with a correlation better than 0.69, verifying the accuracy of the developed ACW-LiDAR system. The analysis of comprehensive scanning detection indicates that the three key atmospheric parameters mentioned above are interrelated and mutually influencing. So the measurement of the same time and common path of atmospheric transmittance, turbulence, and wind is of great significance. These can provide a theoretical and experimental basis for long-term observation and accumulation of atmospheric parameters, as well as the correction of atmospheric parameters.
期刊介绍:
The Journal of Applied Remote Sensing is a peer-reviewed journal that optimizes the communication of concepts, information, and progress among the remote sensing community.