A New Divergence Measure for Intuitionistic Fuzzy Matrices

IF 3.3 4区 计算机科学 Q2 COMPUTER SCIENCE, INFORMATION SYSTEMS Informatica Pub Date : 2023-09-28 DOI:10.31449/inf.v47i8.3638
Alka Rani, Pratiksha Tiwari, Priti Gupta
{"title":"A New Divergence Measure for Intuitionistic Fuzzy Matrices","authors":"Alka Rani, Pratiksha Tiwari, Priti Gupta","doi":"10.31449/inf.v47i8.3638","DOIUrl":null,"url":null,"abstract":"Data available in the real world may not be in a crisp format. Intuitionistic fuzzy matrices are applicable in uncertainty and useful in decision making, relational equation, clustering, etc. Divergence or similarity measures help to characterize dissimilarity or similarity between any two sets. This paper presents a new divergence measure for intuitionistic fuzzy matrices with the verification of its validity. The fundamental properties are demonstrated for the new intuitionistic fuzzy divergence measure. A technique to solve multi-criteria decision-making problems is developed by utilizing the proposed intuitionistic fuzzy divergence measure. Finally, application in the medical diagnosis of this intuitionistic fuzzy divergence measure to decision making is shown using real data.","PeriodicalId":56292,"journal":{"name":"Informatica","volume":"31 1","pages":"0"},"PeriodicalIF":3.3000,"publicationDate":"2023-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Informatica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31449/inf.v47i8.3638","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Data available in the real world may not be in a crisp format. Intuitionistic fuzzy matrices are applicable in uncertainty and useful in decision making, relational equation, clustering, etc. Divergence or similarity measures help to characterize dissimilarity or similarity between any two sets. This paper presents a new divergence measure for intuitionistic fuzzy matrices with the verification of its validity. The fundamental properties are demonstrated for the new intuitionistic fuzzy divergence measure. A technique to solve multi-criteria decision-making problems is developed by utilizing the proposed intuitionistic fuzzy divergence measure. Finally, application in the medical diagnosis of this intuitionistic fuzzy divergence measure to decision making is shown using real data.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
直觉模糊矩阵的一种新的散度测度
现实世界中可用的数据可能不是清晰的格式。直觉模糊矩阵适用于不确定性,在决策、关系方程、聚类等方面都很有用。散度或相似度度量有助于描述任意两个集合之间的不同或相似之处。本文提出了一种新的直觉模糊矩阵的散度度量方法,并对其有效性进行了验证。证明了新的直觉模糊散度测度的基本性质。利用提出的直觉模糊散度测度,提出了一种解决多准则决策问题的方法。最后,用实际数据说明了该直觉模糊散度测度在医学诊断决策中的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Informatica
Informatica 工程技术-计算机:信息系统
CiteScore
5.90
自引率
6.90%
发文量
19
审稿时长
12 months
期刊介绍: The quarterly journal Informatica provides an international forum for high-quality original research and publishes papers on mathematical simulation and optimization, recognition and control, programming theory and systems, automation systems and elements. Informatica provides a multidisciplinary forum for scientists and engineers involved in research and design including experts who implement and manage information systems applications.
期刊最新文献
Beyond Quasi-Adjoint Graphs: On Polynomial-Time Solvable Cases of the Hamiltonian Cycle and Path Problems Confidential Transaction Balance Verification by the Net Using Non-Interactive Zero-Knowledge Proofs An Improved Algorithm for Extracting Frequent Gradual Patterns Offloaded Data Processing Energy Efficiency Evaluation Demystifying the Stability and the Performance Aspects of CoCoSo Ranking Method under Uncertain Preferences
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1