Gabriela Emiliana de Melo e Costa, Frederico Carlos M. de Menezes Filho, Fausto A. Canales, Maria Clara Fava, Abderraman R. Amorim Brandão, Rafael Pedrollo de Paes
{"title":"Assessment of Time Series Models for Mean Discharge Modeling and Forecasting in a Sub-Basin of the Paranaíba River, Brazil","authors":"Gabriela Emiliana de Melo e Costa, Frederico Carlos M. de Menezes Filho, Fausto A. Canales, Maria Clara Fava, Abderraman R. Amorim Brandão, Rafael Pedrollo de Paes","doi":"10.3390/hydrology10110208","DOIUrl":null,"url":null,"abstract":"Stochastic modeling to forecast hydrological variables under changing climatic conditions is essential for water resource management and adaptation planning. This study explores the applicability of stochastic models, specifically SARIMA and SARIMAX, to forecast monthly average river discharge in a sub-basin of the Paranaíba River near Patos de Minas, MG, Brazil. The Paranaíba River is a vital water source for the Alto Paranaíba region, serving industrial supply, drinking water effluent dilution for urban communities, agriculture, fishing, and tourism. The study evaluates the performance of SARIMA and SARIMAX models in long-term discharge modeling and forecasting, demonstrating the SARIMAX model’s superior performance in various metrics, including the Nash–Sutcliffe coefficient (NSE), the root mean square error (RMSE), and the mean absolute percentage error (MAPE). The inclusion of precipitation as a regressor variable considerably improves the forecasting accuracy, and can be attributed to the multivariate structure of the SARIMAX model. While stochastic models like SARIMAX offer valuable decision-making tools for water resource management, the study underscores the significance of employing long-term time series encompassing flood and drought periods and including model uncertainty analysis to enhance the robustness of forecasts. In this study, the SARIMAX model provides a better fit for extreme values, overestimating peaks by around 11.6% and troughs by about 5.0%, compared with the SARIMA model, which tends to underestimate peaks by an average of 6.5% and overestimate troughs by approximately 76.0%. The findings contribute to the literature on water management strategies and mitigating risks associated with extreme hydrological events.","PeriodicalId":37372,"journal":{"name":"Hydrology","volume":null,"pages":null},"PeriodicalIF":3.1000,"publicationDate":"2023-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Hydrology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/hydrology10110208","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"WATER RESOURCES","Score":null,"Total":0}
引用次数: 0
Abstract
Stochastic modeling to forecast hydrological variables under changing climatic conditions is essential for water resource management and adaptation planning. This study explores the applicability of stochastic models, specifically SARIMA and SARIMAX, to forecast monthly average river discharge in a sub-basin of the Paranaíba River near Patos de Minas, MG, Brazil. The Paranaíba River is a vital water source for the Alto Paranaíba region, serving industrial supply, drinking water effluent dilution for urban communities, agriculture, fishing, and tourism. The study evaluates the performance of SARIMA and SARIMAX models in long-term discharge modeling and forecasting, demonstrating the SARIMAX model’s superior performance in various metrics, including the Nash–Sutcliffe coefficient (NSE), the root mean square error (RMSE), and the mean absolute percentage error (MAPE). The inclusion of precipitation as a regressor variable considerably improves the forecasting accuracy, and can be attributed to the multivariate structure of the SARIMAX model. While stochastic models like SARIMAX offer valuable decision-making tools for water resource management, the study underscores the significance of employing long-term time series encompassing flood and drought periods and including model uncertainty analysis to enhance the robustness of forecasts. In this study, the SARIMAX model provides a better fit for extreme values, overestimating peaks by around 11.6% and troughs by about 5.0%, compared with the SARIMA model, which tends to underestimate peaks by an average of 6.5% and overestimate troughs by approximately 76.0%. The findings contribute to the literature on water management strategies and mitigating risks associated with extreme hydrological events.
HydrologyEarth and Planetary Sciences-Earth-Surface Processes
CiteScore
4.90
自引率
21.90%
发文量
192
审稿时长
6 weeks
期刊介绍:
Journal of Hydrology publishes original research papers and comprehensive reviews in all the subfields of the hydrological sciences, including water based management and policy issues that impact on economics and society. These comprise, but are not limited to the physical, chemical, biogeochemical, stochastic and systems aspects of surface and groundwater hydrology, hydrometeorology, hydrogeology and hydrogeophysics. Relevant topics incorporating the insights and methodologies of disciplines such as climatology, water resource systems, ecohydrology, geomorphology, soil science, instrumentation and remote sensing, data and information sciences, civil and environmental engineering are within scope. Social science perspectives on hydrological problems such as resource and ecological economics, sociology, psychology and behavioural science, management and policy analysis are also invited. Multi-and interdisciplinary analyses of hydrological problems are within scope. The science published in the Journal of Hydrology is relevant to catchment scales rather than exclusively to a local scale or site. Studies focused on urban hydrological issues are included.