Optimal Placement and Active Control Methods for Integrating Smart Material in Dynamic Suppression Structures

IF 1.9 Q3 ENGINEERING, MECHANICAL Vibration Pub Date : 2023-11-08 DOI:10.3390/vibration6040058
Amalia Moutsopoulou, Georgios E. Stavroulakis, Markos Petousis, Anastasios Pouliezos, Nectarios Vidakis
{"title":"Optimal Placement and Active Control Methods for Integrating Smart Material in Dynamic Suppression Structures","authors":"Amalia Moutsopoulou, Georgios E. Stavroulakis, Markos Petousis, Anastasios Pouliezos, Nectarios Vidakis","doi":"10.3390/vibration6040058","DOIUrl":null,"url":null,"abstract":"To simulate a lightweight structure with integrated actuators and sensors, two-dimensional finite elements are utilized. The study looks at the optimal location and active vibration control for a piezoelectric smart flexible structure. Intelligent applications are commonly used in engineering applications. In computational mechanics, selecting the ideal position for actuators to suppress oscillations is crucial. The structure oscillates due to dynamic disturbance, and active control is used to try to reduce the oscillation. Utilizing an LQR and Hinfinity controller, optimization is carried out to determine the best controller weights, which will dampen the oscillation. Challenging issues arise in the design of control techniques for piezoelectric smart structures. Piezoelectric materials have been investigated for use in distributed parameter systems (for example airplane wings, intelligent bridges, etc.) to provide active control efficiently and affordably. Still, no full suppression of the oscillation with this approach has been achieved so far. The controller’s order is then decreased using optimization techniques. Piezoelectric actuators are positioned optimally according to an enhanced optimization method. The outcomes demonstrate that the actuator optimization strategies used in the piezoelectric smart single flexible manipulator system have increased observability in addition to good vibration suppression results.","PeriodicalId":75301,"journal":{"name":"Vibration","volume":"361 1","pages":"0"},"PeriodicalIF":1.9000,"publicationDate":"2023-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Vibration","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/vibration6040058","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

Abstract

To simulate a lightweight structure with integrated actuators and sensors, two-dimensional finite elements are utilized. The study looks at the optimal location and active vibration control for a piezoelectric smart flexible structure. Intelligent applications are commonly used in engineering applications. In computational mechanics, selecting the ideal position for actuators to suppress oscillations is crucial. The structure oscillates due to dynamic disturbance, and active control is used to try to reduce the oscillation. Utilizing an LQR and Hinfinity controller, optimization is carried out to determine the best controller weights, which will dampen the oscillation. Challenging issues arise in the design of control techniques for piezoelectric smart structures. Piezoelectric materials have been investigated for use in distributed parameter systems (for example airplane wings, intelligent bridges, etc.) to provide active control efficiently and affordably. Still, no full suppression of the oscillation with this approach has been achieved so far. The controller’s order is then decreased using optimization techniques. Piezoelectric actuators are positioned optimally according to an enhanced optimization method. The outcomes demonstrate that the actuator optimization strategies used in the piezoelectric smart single flexible manipulator system have increased observability in addition to good vibration suppression results.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
动态抑制结构中集成智能材料的优化布局与主动控制方法
采用二维有限元方法对具有执行器和传感器的轻量化结构进行仿真。研究了压电智能柔性结构的最优定位和主动振动控制。智能应用在工程应用中得到了广泛的应用。在计算力学中,选择执行器抑制振动的理想位置是至关重要的。结构由于受到动力扰动而产生振荡,采用主动控制来减小振荡。利用LQR和无穷大控制器进行优化,以确定抑制振荡的最佳控制器权值。压电智能结构的控制技术设计中出现了许多具有挑战性的问题。压电材料已被研究用于分布式参数系统(如飞机机翼、智能桥梁等),以提供有效和经济的主动控制。然而,迄今为止,这种方法还没有完全抑制振荡。然后使用优化技术降低控制器的阶数。采用一种改进的优化方法对压电致动器进行优化定位。结果表明,压电智能单柔性机械臂系统所采用的致动器优化策略除了具有良好的抑振效果外,还提高了系统的可观测性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
3.20
自引率
0.00%
发文量
0
审稿时长
10 weeks
期刊最新文献
A Study of Seating Suspension System Vibration Isolation Using a Hybrid Method of an Artificial Neural Network and Response Surface Modelling Evaluating Contact-Less Sensing and Fault Diagnosis Characteristics in Vibrating Thin Cantilever Beams with a MetGlas® 2826MB Ribbon A Testbench for Measuring the Dynamic Force-Displacement Characteristics of Shockmounts Study on Fluid–Structure Interaction of a Camber Morphing Wing Study on Lateral Vibration of Tail Coach for High-Speed Train under Unsteady Aerodynamic Loads
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1