Reagan Mozer, Luke Miratrix, Jackie Eunjung Relyea, James S. Kim
{"title":"Combining Human and Automated Scoring Methods in Experimental Assessments of Writing: A Case Study Tutorial","authors":"Reagan Mozer, Luke Miratrix, Jackie Eunjung Relyea, James S. Kim","doi":"10.3102/10769986231207886","DOIUrl":null,"url":null,"abstract":"In a randomized trial that collects text as an outcome, traditional approaches for assessing treatment impact require that each document first be manually coded for constructs of interest by human raters. An impact analysis can then be conducted to compare treatment and control groups, using the hand-coded scores as a measured outcome. This process is both time and labor-intensive, which creates a persistent barrier for large-scale assessments of text. Furthermore, enriching one’s understanding of a found impact on text outcomes via secondary analyses can be difficult without additional scoring efforts. The purpose of this article is to provide a pipeline for using machine-based text analytic and data mining tools to augment traditional text-based impact analysis by analyzing impacts across an array of automatically generated text features. In this way, we can explore what an overall impact signifies in terms of how the text has evolved due to treatment. Through a case study based on a recent field trial in education, we show that machine learning can indeed enrich experimental evaluations of text by providing a more comprehensive and fine-grained picture of the mechanisms that lead to stronger argumentative writing in a first- and second-grade content literacy intervention. Relying exclusively on human scoring, by contrast, is a lost opportunity. Overall, the workflow and analytical strategy we describe can serve as a template for researchers interested in performing their own experimental evaluations of text.","PeriodicalId":48001,"journal":{"name":"Journal of Educational and Behavioral Statistics","volume":"159 8‐10","pages":"0"},"PeriodicalIF":1.9000,"publicationDate":"2023-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Educational and Behavioral Statistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3102/10769986231207886","RegionNum":3,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"EDUCATION & EDUCATIONAL RESEARCH","Score":null,"Total":0}
引用次数: 0
Abstract
In a randomized trial that collects text as an outcome, traditional approaches for assessing treatment impact require that each document first be manually coded for constructs of interest by human raters. An impact analysis can then be conducted to compare treatment and control groups, using the hand-coded scores as a measured outcome. This process is both time and labor-intensive, which creates a persistent barrier for large-scale assessments of text. Furthermore, enriching one’s understanding of a found impact on text outcomes via secondary analyses can be difficult without additional scoring efforts. The purpose of this article is to provide a pipeline for using machine-based text analytic and data mining tools to augment traditional text-based impact analysis by analyzing impacts across an array of automatically generated text features. In this way, we can explore what an overall impact signifies in terms of how the text has evolved due to treatment. Through a case study based on a recent field trial in education, we show that machine learning can indeed enrich experimental evaluations of text by providing a more comprehensive and fine-grained picture of the mechanisms that lead to stronger argumentative writing in a first- and second-grade content literacy intervention. Relying exclusively on human scoring, by contrast, is a lost opportunity. Overall, the workflow and analytical strategy we describe can serve as a template for researchers interested in performing their own experimental evaluations of text.
期刊介绍:
Journal of Educational and Behavioral Statistics, sponsored jointly by the American Educational Research Association and the American Statistical Association, publishes articles that are original and provide methods that are useful to those studying problems and issues in educational or behavioral research. Typical papers introduce new methods of analysis. Critical reviews of current practice, tutorial presentations of less well known methods, and novel applications of already-known methods are also of interest. Papers discussing statistical techniques without specific educational or behavioral interest or focusing on substantive results without developing new statistical methods or models or making novel use of existing methods have lower priority. Simulation studies, either to demonstrate properties of an existing method or to compare several existing methods (without providing a new method), also have low priority. The Journal of Educational and Behavioral Statistics provides an outlet for papers that are original and provide methods that are useful to those studying problems and issues in educational or behavioral research. Typical papers introduce new methods of analysis, provide properties of these methods, and an example of use in education or behavioral research. Critical reviews of current practice, tutorial presentations of less well known methods, and novel applications of already-known methods are also sometimes accepted. Papers discussing statistical techniques without specific educational or behavioral interest or focusing on substantive results without developing new statistical methods or models or making novel use of existing methods have lower priority. Simulation studies, either to demonstrate properties of an existing method or to compare several existing methods (without providing a new method), also have low priority.