Fast 4D FEM Model for EIT Source Separation Benchmarking

Diogo Filipe Silva, Steffen Leonhardt
{"title":"Fast 4D FEM Model for EIT Source Separation Benchmarking","authors":"Diogo Filipe Silva, Steffen Leonhardt","doi":"10.1515/cdbme-2023-1097","DOIUrl":null,"url":null,"abstract":"Abstract The accurate separation of cardiac and ventilatory contributions to electrical impedance tomography signals is crucial for complete and non-invasive cardiorespiratory monitoring. However, no consensus on a suitable source separation algorithm was achieved despite several proposals due to lacking systematic evaluation. To address this, we propose a benchmarking 4D finite element method generative model for mixed, cardiac, and ventilatory signals. Our model implements dynamic modelling of the heart, lungs, and pulmonary arteries using realistic volume and flow curve templates, along with cardiac and respiratory frequency coupling.We also employed variable alveolar and blood conductivities. The model was able to obtain long recordings faster than comparably complex models while maintaining significant physiological effects and signal properties such as non-stationarity, spatial delays, time and frequency profiles. The realistic physiological model can be used to taxonomize and evaluate source separation algorithms, as well as aid in the development and training of new ones.","PeriodicalId":10739,"journal":{"name":"Current Directions in Biomedical Engineering","volume":"78 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Directions in Biomedical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/cdbme-2023-1097","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 1

Abstract

Abstract The accurate separation of cardiac and ventilatory contributions to electrical impedance tomography signals is crucial for complete and non-invasive cardiorespiratory monitoring. However, no consensus on a suitable source separation algorithm was achieved despite several proposals due to lacking systematic evaluation. To address this, we propose a benchmarking 4D finite element method generative model for mixed, cardiac, and ventilatory signals. Our model implements dynamic modelling of the heart, lungs, and pulmonary arteries using realistic volume and flow curve templates, along with cardiac and respiratory frequency coupling.We also employed variable alveolar and blood conductivities. The model was able to obtain long recordings faster than comparably complex models while maintaining significant physiological effects and signal properties such as non-stationarity, spatial delays, time and frequency profiles. The realistic physiological model can be used to taxonomize and evaluate source separation algorithms, as well as aid in the development and training of new ones.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
EIT源分离标杆快速四维有限元模型
准确分离电阻抗断层扫描信号对心脏和通气的贡献对于完整和无创的心肺监测至关重要。然而,由于缺乏系统的评估,尽管有一些建议,但对合适的源分离算法没有达成共识。为了解决这个问题,我们提出了一个基准的四维有限元方法生成模型,用于混合,心脏和呼吸信号。我们的模型使用真实的体积和流量曲线模板,以及心脏和呼吸频率耦合,实现了心脏、肺和肺动脉的动态建模。我们还采用了可变肺泡和血液电导率。该模型能够比相当复杂的模型更快地获得长时间记录,同时保持显著的生理效应和信号特性,如非平稳性、空间延迟、时间和频率分布。真实的生理模型可以用来分类和评估源分离算法,也可以帮助开发和训练新的源分离算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Current Directions in Biomedical Engineering
Current Directions in Biomedical Engineering Engineering-Biomedical Engineering
CiteScore
0.90
自引率
0.00%
发文量
239
审稿时长
14 weeks
期刊最新文献
Stability of cell adhesion noise analysis for the detection of cancer cell lines Consideration of Kv ion channels as firstorder systems Photovoltaic Stimulation Induces Overdrive Suppression in Embryonic Chicken Cardiomyocytes Comparative Analysis of Mechanical Water Level Tank and Human Fluid Flow ECG Beat classification: Impact of linear dependent samples
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1