Fingerprinting Bitcoin entities using money flow representation learning

IF 1.3 Q3 COMPUTER SCIENCE, THEORY & METHODS Applied Network Science Pub Date : 2023-09-15 DOI:10.1007/s41109-023-00591-2
Natkamon Tovanich, Rémy Cazabet
{"title":"Fingerprinting Bitcoin entities using money flow representation learning","authors":"Natkamon Tovanich, Rémy Cazabet","doi":"10.1007/s41109-023-00591-2","DOIUrl":null,"url":null,"abstract":"Abstract Deanonymization is one of the major research challenges in the Bitcoin blockchain, as entities are pseudonymous and cannot be identified from the on-chain data. Various approaches exist to identify multiple addresses of the same entity, i.e., address clustering. But it is known that these approaches tend to find several clusters for the same actor. In this work, we propose to assign a fingerprint to entities based on the dynamic graph of the taint flow of money originating from them, with the idea that we could identify multiple clusters of addresses belonging to the same entity as having similar fingerprints. We experiment with different configurations to generate substructure patterns from taint flows before embedding them using representation learning models. To evaluate our method, we train classification models to identify entities from their fingerprints. Experiments show that our approach can accurately classify entities on three datasets. We compare different fingerprint strategies and show that including the temporality of transactions improves classification accuracy and that following the flow for too long impairs performance. Our work demonstrates that out-flow fingerprinting is a valid approach for recognizing multiple clusters of the same entity.","PeriodicalId":37010,"journal":{"name":"Applied Network Science","volume":null,"pages":null},"PeriodicalIF":1.3000,"publicationDate":"2023-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Network Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s41109-023-00591-2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract Deanonymization is one of the major research challenges in the Bitcoin blockchain, as entities are pseudonymous and cannot be identified from the on-chain data. Various approaches exist to identify multiple addresses of the same entity, i.e., address clustering. But it is known that these approaches tend to find several clusters for the same actor. In this work, we propose to assign a fingerprint to entities based on the dynamic graph of the taint flow of money originating from them, with the idea that we could identify multiple clusters of addresses belonging to the same entity as having similar fingerprints. We experiment with different configurations to generate substructure patterns from taint flows before embedding them using representation learning models. To evaluate our method, we train classification models to identify entities from their fingerprints. Experiments show that our approach can accurately classify entities on three datasets. We compare different fingerprint strategies and show that including the temporality of transactions improves classification accuracy and that following the flow for too long impairs performance. Our work demonstrates that out-flow fingerprinting is a valid approach for recognizing multiple clusters of the same entity.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用现金流表征学习识别比特币实体
由于实体是假名的,无法从链上数据中识别,因此去匿名化是比特币区块链的主要研究挑战之一。存在各种方法来识别同一实体的多个地址,即地址集群。但众所周知,这些方法倾向于为同一个演员找到几个集群。在这项工作中,我们建议根据来自它们的资金污染流的动态图为实体分配指纹,我们可以识别属于同一实体的多个地址簇,因为它们具有相似的指纹。在使用表征学习模型嵌入污染流之前,我们尝试了不同的配置来从污染流中生成子结构模式。为了评估我们的方法,我们训练分类模型从指纹中识别实体。实验表明,我们的方法可以准确地对三个数据集上的实体进行分类。我们比较了不同的指纹策略,并表明包含事务的时间性可以提高分类准确性,而长时间跟踪流会损害性能。我们的工作表明,流出指纹是识别同一实体的多个集群的有效方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Applied Network Science
Applied Network Science Multidisciplinary-Multidisciplinary
CiteScore
4.60
自引率
4.50%
发文量
74
审稿时长
5 weeks
期刊最新文献
A multilevel backbone extraction framework Online news ecosystem dynamics: supply, demand, diffusion, and the role of disinformation A bridge between influence models and control methods Link-limited bypass rewiring for enhancing the robustness of complex networks Persistent homology based Bottleneck distance in hypergraph products
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1