Suman Kumar Sourav, C. T. Subbarayappa, D C. Hanumanthappa, None Mudalagiriyappa, Prem Jose Vazhacharickal, Andrea Mock, Mariko Ingold, Andreas Buerkert
{"title":"Soil respiration under different N fertilization and irrigation regimes in Bengaluru, S-India","authors":"Suman Kumar Sourav, C. T. Subbarayappa, D C. Hanumanthappa, None Mudalagiriyappa, Prem Jose Vazhacharickal, Andrea Mock, Mariko Ingold, Andreas Buerkert","doi":"10.1007/s10705-023-10311-y","DOIUrl":null,"url":null,"abstract":"Abstract Rapid urbanization in many countries of the Global South has led to intensification of urban and peri-urban agriculture (UPA) whose effects on the soils’ physical, chemical, and microbial properties have been hardly studied. We therefore investigated the effects of different intensity levels, exemplified by three rates of mineral nitrogen (N) addition and irrigation on CO 2 emissions in typical crops during the wet ( Kharif ) and dry ( Rabi ) season on a Nitisol in Bengaluru, S-India. Respiration data were collected from 2017 to 2021 in two two-factorial split-plot experiments conducted under rainfed and irrigated conditions. Test crops were maize ( Zea mays L.), finger millet ( Eleusine coracana Gaertn.), and lablab ( Lablab purpureus L. Sweet) under rainfed and irrigated conditions, as well as the vegetables cabbage ( Brassica oleracea var. capitata ), eggplant ( Solanum melongena L.), and tomato ( Solanum lycopersicum L.) or chili ( Capsicum annuum L.). Carbon dioxide (CO 2 ) emissions were determined using a Los Gatos Research (LGR) multi-gas analyzer whereby under our study conditions CH 4 , NH 3 and N 2 O were negligible. Measurements were conducted from 7:00 am to 11:30 am and repeated from 12:30 pm to 6:00 pm. Irrespective of irrigation, season, crops and N fertilizer level, CO 2 emission rates during afternoon hours were significantly higher (2–128%) than during morning hours. In the irrigated field diurnal emission differences between afternoon and morning hours ranged from 0.04 to 1.61 kg CO 2 -C ha −1 h −1 while in the rainfed field they averaged 0.20–1.78 kg CO 2 -C ha −1 h −1 . Irrespective of crops, in the rainfed field CO 2 emissions in high N plots were 56.4% larger than in low N plots whereas in the irrigated field they were only 12.1% larger. The results of a linear mixed model analysis indicated that N fertilization enhanced CO 2 emissions whereby these effects were highest in rainfed crops. Soil moisture enhanced emissions in rainfed crops but decreased them under irrigation where crop-specific CO 2 emissions within a season were independent of N application. Soil temperature at 5 cm depth enhanced CO 2 emissions in both fields. Overall, higher N and soil temperature enhanced CO 2 fluxes whereas effects of soil moisture depended on irrigation.","PeriodicalId":19336,"journal":{"name":"Nutrient Cycling in Agroecosystems","volume":"20 1","pages":"0"},"PeriodicalIF":2.4000,"publicationDate":"2023-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nutrient Cycling in Agroecosystems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s10705-023-10311-y","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"SOIL SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract Rapid urbanization in many countries of the Global South has led to intensification of urban and peri-urban agriculture (UPA) whose effects on the soils’ physical, chemical, and microbial properties have been hardly studied. We therefore investigated the effects of different intensity levels, exemplified by three rates of mineral nitrogen (N) addition and irrigation on CO 2 emissions in typical crops during the wet ( Kharif ) and dry ( Rabi ) season on a Nitisol in Bengaluru, S-India. Respiration data were collected from 2017 to 2021 in two two-factorial split-plot experiments conducted under rainfed and irrigated conditions. Test crops were maize ( Zea mays L.), finger millet ( Eleusine coracana Gaertn.), and lablab ( Lablab purpureus L. Sweet) under rainfed and irrigated conditions, as well as the vegetables cabbage ( Brassica oleracea var. capitata ), eggplant ( Solanum melongena L.), and tomato ( Solanum lycopersicum L.) or chili ( Capsicum annuum L.). Carbon dioxide (CO 2 ) emissions were determined using a Los Gatos Research (LGR) multi-gas analyzer whereby under our study conditions CH 4 , NH 3 and N 2 O were negligible. Measurements were conducted from 7:00 am to 11:30 am and repeated from 12:30 pm to 6:00 pm. Irrespective of irrigation, season, crops and N fertilizer level, CO 2 emission rates during afternoon hours were significantly higher (2–128%) than during morning hours. In the irrigated field diurnal emission differences between afternoon and morning hours ranged from 0.04 to 1.61 kg CO 2 -C ha −1 h −1 while in the rainfed field they averaged 0.20–1.78 kg CO 2 -C ha −1 h −1 . Irrespective of crops, in the rainfed field CO 2 emissions in high N plots were 56.4% larger than in low N plots whereas in the irrigated field they were only 12.1% larger. The results of a linear mixed model analysis indicated that N fertilization enhanced CO 2 emissions whereby these effects were highest in rainfed crops. Soil moisture enhanced emissions in rainfed crops but decreased them under irrigation where crop-specific CO 2 emissions within a season were independent of N application. Soil temperature at 5 cm depth enhanced CO 2 emissions in both fields. Overall, higher N and soil temperature enhanced CO 2 fluxes whereas effects of soil moisture depended on irrigation.
期刊介绍:
Nutrient Cycling in Agroecosystems considers manuscripts dealing with all aspects of carbon and nutrient cycling as well as management and examining their effect in ecological, agronomic, environmental and economic terms. Target agroecosystems include field crop, organic agriculture, urban or peri-urban agriculture, horticulture, bioenergy, agroforestry, livestock, pasture, and fallow systems as well as their system components such as plants and the fertility, chemistry, physics or faunal and micro-biology of soils. The scale of observation is the cycles in the soil-plant-animal system on or relevant to a field or watershed level as well as inputs from or losses to the anthroposphere, atmosphere and hydrosphere. Studies should thus consider the wider system in the examination of cycling and fluxes in agroecosystems or their components. These may include typically multi-year field observations, farm gate budgets, watershed studies, life cycle assessments, enterprise and economic analyses, or regional and global modeling. Management objectives may not only include the maximization of food, fiber and fuel production, but also its environmental and economic impact. The results must allow mechanistic conclusions of broad applicability and distinguish itself from empirical results or case studies of merely local or regional importance. If unsure whether a study fits into this scope, please contact the editor with a brief inquiry before manuscript submission.