The Anatomy of Mortgage Default Using Shape-Constrained Explainable Machine Learning Model

Geng Deng, Guangning Xu, Zebin Yang, Yongping Liang, Xindong Wang, Qiang Fu, Aijun Zhang, Agus Sudjianto
{"title":"The Anatomy of Mortgage Default Using Shape-Constrained Explainable Machine Learning Model","authors":"Geng Deng, Guangning Xu, Zebin Yang, Yongping Liang, Xindong Wang, Qiang Fu, Aijun Zhang, Agus Sudjianto","doi":"10.3905/jfds.2023.1.136","DOIUrl":null,"url":null,"abstract":"This study leverages novel machine learning techniques to quantify the complex empirical relationship between mortgage default and its drivers. The primary model employed is the authors’ newly developed shape-constrained GAMI-Net, which introduces lattice function-based main effects and pairwise interactions that take user-defined shape constraints. Their approach of adding shape constraints to a lattice module enhances the interpretability and applicability of the model in real-world scenarios. The authors compare the performance of shape-constrained GAMI-Net with alternative machine learning and traditional statistical methods using Freddie Mac’s publicly available mortgage dataset. The results demonstrate competitive predictive performance and high interpretability for the shape-constrained GAMI-Net model.","PeriodicalId":199045,"journal":{"name":"The Journal of Financial Data Science","volume":"137 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Financial Data Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3905/jfds.2023.1.136","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This study leverages novel machine learning techniques to quantify the complex empirical relationship between mortgage default and its drivers. The primary model employed is the authors’ newly developed shape-constrained GAMI-Net, which introduces lattice function-based main effects and pairwise interactions that take user-defined shape constraints. Their approach of adding shape constraints to a lattice module enhances the interpretability and applicability of the model in real-world scenarios. The authors compare the performance of shape-constrained GAMI-Net with alternative machine learning and traditional statistical methods using Freddie Mac’s publicly available mortgage dataset. The results demonstrate competitive predictive performance and high interpretability for the shape-constrained GAMI-Net model.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用形状约束的可解释机器学习模型剖析抵押贷款违约
本研究利用新颖的机器学习技术来量化抵押贷款违约及其驱动因素之间复杂的经验关系。采用的主要模型是作者新开发的形状约束的GAMI-Net,它引入了基于点阵函数的主效应和采用用户定义形状约束的两两交互。他们向格模块添加形状约束的方法增强了模型在现实场景中的可解释性和适用性。作者使用房地美公开的抵押贷款数据集,将形状受限的GAMI-Net与替代机器学习和传统统计方法的性能进行了比较。结果表明,形状约束的GAMI-Net模型具有较好的预测性能和较高的可解释性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Managing Editor’s Letter Explainable Machine Learning Models of Consumer Credit Risk Predicting Returns with Machine Learning across Horizons, Firm Size, and Time Deep Calibration with Artificial Neural Network: A Performance Comparison on Option-Pricing Models RIFT: Pretraining and Applications for Representations of Interrelated Financial Time Series
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1