FengYongchang, ChenLin, MereySukru, LijithKoorthedath Pullayikodi, SinghDevendra N, KomiyaAtsuki, MaruyamaShigenao
{"title":"Simulation of gas production from hydrate reservoirs (AT1) of Eastern Nankai Trough, Japan","authors":"FengYongchang, ChenLin, MereySukru, LijithKoorthedath Pullayikodi, SinghDevendra N, KomiyaAtsuki, MaruyamaShigenao","doi":"10.1680/jenge.19.00177","DOIUrl":null,"url":null,"abstract":"Gas hydrates are regarded as one of the most promising alternative sources of energy, which have the potential to address the energy demand of a contemporary society. Based on the field explorations in the Eastern Nankai Trough (Japan), a multilayered hydrate reservoir model has been conceptualised and its behaviours during depressurisation production are simulated. This model incorporates the effects of the initial reservoir temperature and permeability on the mechanism of hydrate dissociation, which in turn affects the gas production. It is shown that the dissociation process is largely affected by the initial temperature distribution within the reservoir layers, and the ‘warmer’ reservoirs show (consistently) higher production potential. Furthermore, the gas production could be improved significantly, by increasing the permeability of the wellbore region, which can be achieved through the fracturing process. The close match between the simulation results and the field tests is noteworthy. The proposed multilayered model would be quite useful for analysing the efficacy of the ‘production strategy’, in most real-life situations.","PeriodicalId":11823,"journal":{"name":"Environmental geotechnics","volume":"48 1","pages":"0"},"PeriodicalIF":2.2000,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental geotechnics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1680/jenge.19.00177","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, GEOLOGICAL","Score":null,"Total":0}
引用次数: 4
Abstract
Gas hydrates are regarded as one of the most promising alternative sources of energy, which have the potential to address the energy demand of a contemporary society. Based on the field explorations in the Eastern Nankai Trough (Japan), a multilayered hydrate reservoir model has been conceptualised and its behaviours during depressurisation production are simulated. This model incorporates the effects of the initial reservoir temperature and permeability on the mechanism of hydrate dissociation, which in turn affects the gas production. It is shown that the dissociation process is largely affected by the initial temperature distribution within the reservoir layers, and the ‘warmer’ reservoirs show (consistently) higher production potential. Furthermore, the gas production could be improved significantly, by increasing the permeability of the wellbore region, which can be achieved through the fracturing process. The close match between the simulation results and the field tests is noteworthy. The proposed multilayered model would be quite useful for analysing the efficacy of the ‘production strategy’, in most real-life situations.
期刊介绍:
In 21st century living, engineers and researchers need to deal with growing problems related to climate change, oil and water storage, handling, storage and disposal of toxic and hazardous wastes, remediation of contaminated sites, sustainable development and energy derived from the ground.
Environmental Geotechnics aims to disseminate knowledge and provides a fresh perspective regarding the basic concepts, theory, techniques and field applicability of innovative testing and analysis methodologies and engineering practices in geoenvironmental engineering.
The journal''s Editor in Chief is a Member of the Committee on Publication Ethics.
All relevant papers are carefully considered, vetted by a distinguished team of international experts and rapidly published. Full research papers, short communications and comprehensive review articles are published under the following broad subject categories:
geochemistry and geohydrology,
soil and rock physics, biological processes in soil, soil-atmosphere interaction,
electrical, electromagnetic and thermal characteristics of porous media,
waste management, utilization of wastes, multiphase science, landslide wasting,
soil and water conservation,
sensor development and applications,
the impact of climatic changes on geoenvironmental, geothermal/ground-source energy, carbon sequestration, oil and gas extraction techniques,
uncertainty, reliability and risk, monitoring and forensic geotechnics.