Phase transition regulation, magnetocaloric effect, and abnormal thermal expansion

None Yuan Lin, None Fengxia Hu, None Baogen Shen
{"title":"Phase transition regulation, magnetocaloric effect, and abnormal thermal expansion","authors":"None Yuan Lin, None Fengxia Hu, None Baogen Shen","doi":"10.7498/aps.72.20231118","DOIUrl":null,"url":null,"abstract":"As a common phenomenon in nature, phase transition has caught people’s attention for a long time. Thus, it has been applied to various fields, such as refrigeration, information and energy storage, and negative thermal expansion. With the virtues of environmental friendliness, high efficiency, noiselessness and easy miniaturization, solid refrigeration technique based on magnetocaloric, electrocaloric, and mechanocaloric effects, is a promising candidate to replace vapor compression technique. Among them, magnetocaloric effect has the longest research history. However, the shortcomings of magnetocaloric effect driven by a single magnetic field limit its solid-state refrigeration application, such as insufficient amplitude of caloric effect, large hysteresis loss, and narrow refrigeration temperature span. To solve these problems, multifield tuning and multicaloric effect came into people's sight. This review introduces our recent research on improving the caloric effect by applying multifield, such as boosting the entropy change, enlarging the transition temperature span, tuning the transition temperature, and lowering the hysteresis losses. Meanwhile, the thermodynamics of multifield and coupled-caloric effect is presented. On the other hand, abnormal thermal expansion (zero thermal expansion, negative thermal expansion) materials have important applications in precision manufacturing. The phase transition and lattice effect dominated by magnetic atoms in the giant magnetocaloric materials with strong magnetic-crystal coupling provide an ideal platform for exploring abnormal thermal expansion. This review also introduces our recent research on abnormal thermal expansion in magnetocaloric materials and prospects relevant research in future.","PeriodicalId":10252,"journal":{"name":"Chinese Physics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chinese Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7498/aps.72.20231118","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

As a common phenomenon in nature, phase transition has caught people’s attention for a long time. Thus, it has been applied to various fields, such as refrigeration, information and energy storage, and negative thermal expansion. With the virtues of environmental friendliness, high efficiency, noiselessness and easy miniaturization, solid refrigeration technique based on magnetocaloric, electrocaloric, and mechanocaloric effects, is a promising candidate to replace vapor compression technique. Among them, magnetocaloric effect has the longest research history. However, the shortcomings of magnetocaloric effect driven by a single magnetic field limit its solid-state refrigeration application, such as insufficient amplitude of caloric effect, large hysteresis loss, and narrow refrigeration temperature span. To solve these problems, multifield tuning and multicaloric effect came into people's sight. This review introduces our recent research on improving the caloric effect by applying multifield, such as boosting the entropy change, enlarging the transition temperature span, tuning the transition temperature, and lowering the hysteresis losses. Meanwhile, the thermodynamics of multifield and coupled-caloric effect is presented. On the other hand, abnormal thermal expansion (zero thermal expansion, negative thermal expansion) materials have important applications in precision manufacturing. The phase transition and lattice effect dominated by magnetic atoms in the giant magnetocaloric materials with strong magnetic-crystal coupling provide an ideal platform for exploring abnormal thermal expansion. This review also introduces our recent research on abnormal thermal expansion in magnetocaloric materials and prospects relevant research in future.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
相变调节、磁热效应和异常热膨胀
相变作为自然界的一种普遍现象,长期以来一直受到人们的关注。因此,它已被应用于制冷、信息和储能、负热膨胀等各个领域。基于磁热效应、电热效应和机械能效应的固体制冷技术具有环保、高效、无噪音和易于小型化等优点,是取代蒸汽压缩技术的一个很有前途的选择。其中,磁热效应的研究历史最为悠久。然而,单磁场驱动的磁热效应存在热效应幅度不足、磁滞损耗大、制冷温度跨度窄等缺点,限制了其在固态制冷中的应用。为了解决这些问题,多场调谐和多色效应进入了人们的视野。本文综述了近年来国内外在提高热效应方面的研究进展,包括提高热效应的熵变、增大相变温度跨度、调节相变温度、降低磁滞损耗等。同时,对多场效应和耦合热效应进行了热力学分析。另一方面,异常热膨胀(零热膨胀、负热膨胀)材料在精密制造中有着重要的应用。强磁晶耦合巨磁热材料中磁性原子主导的相变和晶格效应为研究异常热膨胀提供了理想的平台。介绍了近年来在磁热材料异常热膨胀方面的研究进展,并对今后的研究进行了展望。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
General Theory of quantum holography based on two-photon Interference Back contact optimization for Sb<sub>2</sub>Se<sub>3</sub> solar cells Algorithms for calculating polarization direction based on spatial modulation of vector optical field Enhanced microwave absorption properties of large-sized monolayer two-dimensional Ti<sub>3</sub>C<sub>2</sub>T<sub>x</sub> loaded with Fe<sub>3</sub>O<sub>4</sub> nanoparticles Effect of energy level configuration on storage of optical solitons in InAs/GaAs quantum dot electromagnetically induced transparency medium
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1