Optimized Feature Selection for PCOS Disease Prediction

IF 0.3 4区 综合性期刊 Q4 MULTIDISCIPLINARY SCIENCES Comptes Rendus De L Academie Bulgare Des Sciences Pub Date : 2023-10-01 DOI:10.7546/crabs.2023.09.14
Selvaraj Santhi, Sundaradhas Nidhyananthan
{"title":"Optimized Feature Selection for PCOS Disease Prediction","authors":"Selvaraj Santhi, Sundaradhas Nidhyananthan","doi":"10.7546/crabs.2023.09.14","DOIUrl":null,"url":null,"abstract":"PCOS is the most predominant endocrine problem among women of reproductive age, which affects ovaries and causes irregularities in menstrual cycles, weight gain, and hirsutism [Bulsara J., P. Patel, A. Soni, S. Acharya (2021) A review: Brief insight into PCOS, Endocrine and Metabolic Sci., 3, 1–7]. The condition probably results from a mix of causes, including qualities and ecological elements. The aim of this study is to investigate the performance of Binarized Butterfly Optimization Algorithm, Binarized Grey Wolf Optimization Algorithm, Binarized Genetic Algorithm and Binarized Cuckoo Optimization Algorithm in terms of classification accuracy. Kaggle PCOS dataset is used for this work and it has 541 records and 43 attributes. The study aims to investigate the performance of four optimization algorithms in terms of classification accuracy for predicting PCOS disease. The BGWO optimization algorithm outperformed the other algorithms with 99% accuracy, while the BGA produced the most optimal subset. The study highlights the significance of feature selection in improving the performance of classification algorithms.","PeriodicalId":50652,"journal":{"name":"Comptes Rendus De L Academie Bulgare Des Sciences","volume":"56 1","pages":"0"},"PeriodicalIF":0.3000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Comptes Rendus De L Academie Bulgare Des Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7546/crabs.2023.09.14","RegionNum":4,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

PCOS is the most predominant endocrine problem among women of reproductive age, which affects ovaries and causes irregularities in menstrual cycles, weight gain, and hirsutism [Bulsara J., P. Patel, A. Soni, S. Acharya (2021) A review: Brief insight into PCOS, Endocrine and Metabolic Sci., 3, 1–7]. The condition probably results from a mix of causes, including qualities and ecological elements. The aim of this study is to investigate the performance of Binarized Butterfly Optimization Algorithm, Binarized Grey Wolf Optimization Algorithm, Binarized Genetic Algorithm and Binarized Cuckoo Optimization Algorithm in terms of classification accuracy. Kaggle PCOS dataset is used for this work and it has 541 records and 43 attributes. The study aims to investigate the performance of four optimization algorithms in terms of classification accuracy for predicting PCOS disease. The BGWO optimization algorithm outperformed the other algorithms with 99% accuracy, while the BGA produced the most optimal subset. The study highlights the significance of feature selection in improving the performance of classification algorithms.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
PCOS疾病预测的优化特征选择
PCOS是育龄妇女中最主要的内分泌问题,它影响卵巢,导致月经周期不规则、体重增加和多毛[Bulsara J., P. Patel, A. Soni, S. Acharya(2021)]。, 3,1 - 7]。这种情况可能是由多种原因造成的,包括质量和生态因素。本研究的目的是考察二值化蝴蝶优化算法、二值化灰狼优化算法、二值化遗传算法和二值化布谷鸟优化算法在分类精度方面的性能。这项工作使用了Kaggle PCOS数据集,它有541条记录和43个属性。本研究旨在探讨四种优化算法在预测多囊卵巢综合征疾病分类准确率方面的表现。BGWO优化算法以99%的准确率优于其他算法,而BGA产生了最优子集。该研究突出了特征选择对提高分类算法性能的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Comptes Rendus De L Academie Bulgare Des Sciences
Comptes Rendus De L Academie Bulgare Des Sciences 综合性期刊-综合性期刊
CiteScore
0.60
自引率
33.30%
发文量
181
审稿时长
3-6 weeks
期刊介绍: Founded in 1948 by academician Georgy Nadjakov, "Comptes rendus de l’Académie bulgare des Sciences" is also known as "Доклади на БАН","Доклады Болгарской академии наук" and "Proceeding of the Bulgarian Academy of Sciences". If applicable, the name of the journal should be abbreviated as follows: C. R. Acad. Bulg. Sci. (according to ISO)
期刊最新文献
A Three-link Gravity-balanced Mechanism for Operating Room Assistance A Study on Lacunary Strong Convergence according to Modulus Functions Two Innovations for Critical Infrastructure Protection from Natural Disasters Prenatal Progesterone Treatment Induces Sex-dependent Anxiety and Depressive-like Behaviour in Adult Offspring Design and Implementation of Modified Multilevel Inverter FED BLDC Motor for Electric Vehicle Application
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1