Short-term stock price trend prediction with imaging high frequency limit order book data

IF 6.9 2区 经济学 Q1 ECONOMICS International Journal of Forecasting Pub Date : 2023-11-03 DOI:10.1016/j.ijforecast.2023.10.008
Wuyi Ye, Jinting Yang, Pengzhan Chen
{"title":"Short-term stock price trend prediction with imaging high frequency limit order book data","authors":"Wuyi Ye,&nbsp;Jinting Yang,&nbsp;Pengzhan Chen","doi":"10.1016/j.ijforecast.2023.10.008","DOIUrl":null,"url":null,"abstract":"<div><p>Predicting price movements over a short period is a challenging problem in high-frequency trading. Deep learning methods have recently been used to forecast short-term prices via limit order book (LOB) data. In this paper, we propose a framework to convert LOB data into a series of standard images in 2D matrices and predict the mid-price movements via an image-based convolutional neural network (CNN). The empirical study shows that the image-based CNN model outperforms other traditional machine learning and deep learning methods based on raw LOB data. Our findings suggest that the additional information implicit in LOB images contributes to short-term price forecasting.</p></div>","PeriodicalId":14061,"journal":{"name":"International Journal of Forecasting","volume":"40 3","pages":"Pages 1189-1205"},"PeriodicalIF":6.9000,"publicationDate":"2023-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Forecasting","FirstCategoryId":"96","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0169207023001073","RegionNum":2,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 0

Abstract

Predicting price movements over a short period is a challenging problem in high-frequency trading. Deep learning methods have recently been used to forecast short-term prices via limit order book (LOB) data. In this paper, we propose a framework to convert LOB data into a series of standard images in 2D matrices and predict the mid-price movements via an image-based convolutional neural network (CNN). The empirical study shows that the image-based CNN model outperforms other traditional machine learning and deep learning methods based on raw LOB data. Our findings suggest that the additional information implicit in LOB images contributes to short-term price forecasting.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用成像高频限价订单簿数据预测短期股价趋势
在高频交易中,预测短期价格走势是一个具有挑战性的问题。最近,深度学习方法被用于通过限价订单簿(LOB)数据预测短期价格。在本文中,我们提出了一个框架,将 LOB 数据转换成一系列二维矩阵中的标准图像,并通过基于图像的卷积神经网络(CNN)预测中间价格走势。实证研究表明,基于图像的 CNN 模型优于其他基于原始 LOB 数据的传统机器学习和深度学习方法。我们的研究结果表明,LOB 图像中隐含的额外信息有助于短期价格预测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
17.10
自引率
11.40%
发文量
189
审稿时长
77 days
期刊介绍: The International Journal of Forecasting is a leading journal in its field that publishes high quality refereed papers. It aims to bridge the gap between theory and practice, making forecasting useful and relevant for decision and policy makers. The journal places strong emphasis on empirical studies, evaluation activities, implementation research, and improving the practice of forecasting. It welcomes various points of view and encourages debate to find solutions to field-related problems. The journal is the official publication of the International Institute of Forecasters (IIF) and is indexed in Sociological Abstracts, Journal of Economic Literature, Statistical Theory and Method Abstracts, INSPEC, Current Contents, UMI Data Courier, RePEc, Academic Journal Guide, CIS, IAOR, and Social Sciences Citation Index.
期刊最新文献
Editorial Board Forecasting house price growth rates with factor models and spatio-temporal clustering Forecasting realized volatility with spillover effects: Perspectives from graph neural networks Sparse time-varying parameter VECMs with an application to modeling electricity prices Guest editorial: Forecasting for social good
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1