Astrochemical Modeling of Propargyl Radical Chemistry in TMC-1

IF 4.8 2区 物理与天体物理 Q1 ASTRONOMY & ASTROPHYSICS Astrophysical Journal Pub Date : 2023-11-01 DOI:10.3847/1538-4357/acf863
Alex N. Byrne, Ci Xue, Ilsa R. Cooke, Michael C. McCarthy, Brett A. McGuire
{"title":"Astrochemical Modeling of Propargyl Radical Chemistry in TMC-1","authors":"Alex N. Byrne, Ci Xue, Ilsa R. Cooke, Michael C. McCarthy, Brett A. McGuire","doi":"10.3847/1538-4357/acf863","DOIUrl":null,"url":null,"abstract":"Abstract Recent detections of aromatic species in dark molecular clouds suggest that formation pathways may be efficient at very low temperatures and pressures, yet current astrochemical models are unable to account for their derived abundances, which can often deviate from model predictions by several orders of magnitude. The propargyl radical, a highly abundant species in the dark molecular cloud TMC-1, is an important aromatic precursor in combustion flames and possibly interstellar environments. We performed astrochemical modeling of TMC-1 using the three-phase gas-grain code NAUTILUS and an updated chemical network, focused on refining the chemistry of the propargyl radical and related species. The abundance of the propargyl radical has been increased by half an order of magnitude compared to the previous GOTHAM network. This brings it closer in line with observations, but it remains underestimated by 2 orders of magnitude compared to its observed value. Predicted abundances for the chemically related C 4 H 3 N isomers within an order of magnitude of observed values corroborate the high efficiency of CN addition to closed-shell hydrocarbons under dark molecular cloud conditions. The results of our modeling provide insight into the chemical processes of the propargyl radical in dark molecular clouds and highlight the importance of resonance-stabilized radicals in polycyclic aromatic hydrocarbon formation.","PeriodicalId":50735,"journal":{"name":"Astrophysical Journal","volume":"55 1","pages":"0"},"PeriodicalIF":4.8000,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Astrophysical Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3847/1538-4357/acf863","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract Recent detections of aromatic species in dark molecular clouds suggest that formation pathways may be efficient at very low temperatures and pressures, yet current astrochemical models are unable to account for their derived abundances, which can often deviate from model predictions by several orders of magnitude. The propargyl radical, a highly abundant species in the dark molecular cloud TMC-1, is an important aromatic precursor in combustion flames and possibly interstellar environments. We performed astrochemical modeling of TMC-1 using the three-phase gas-grain code NAUTILUS and an updated chemical network, focused on refining the chemistry of the propargyl radical and related species. The abundance of the propargyl radical has been increased by half an order of magnitude compared to the previous GOTHAM network. This brings it closer in line with observations, but it remains underestimated by 2 orders of magnitude compared to its observed value. Predicted abundances for the chemically related C 4 H 3 N isomers within an order of magnitude of observed values corroborate the high efficiency of CN addition to closed-shell hydrocarbons under dark molecular cloud conditions. The results of our modeling provide insight into the chemical processes of the propargyl radical in dark molecular clouds and highlight the importance of resonance-stabilized radicals in polycyclic aromatic hydrocarbon formation.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
TMC-1中丙炔自由基化学的天体化学模型
最近对暗分子云中芳香物质的检测表明,在非常低的温度和压力下,形成途径可能是有效的,但目前的天体化学模型无法解释它们的衍生丰度,这些丰度往往与模型预测相差几个数量级。丙炔自由基在暗分子云TMC-1中含量丰富,是燃烧火焰和可能的星际环境中重要的芳香前体。我们使用三相气粒代码NAUTILUS和更新的化学网络对TMC-1进行了天体化学建模,重点是细化丙炔自由基和相关物质的化学性质。与之前的GOTHAM网络相比,丙炔基的丰度增加了半个数量级。这使它与观测值更接近,但与观测值相比,它仍然被低估了2个数量级。化学相关c4h3n异构体的预测丰度在观测值的数量级内,证实了在暗分子云条件下CN加成于闭壳烃的高效率。我们的建模结果提供了对黑暗分子云中丙炔自由基的化学过程的深入了解,并强调了共振稳定自由基在多环芳烃形成中的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Astrophysical Journal
Astrophysical Journal 地学天文-天文与天体物理
CiteScore
8.40
自引率
30.60%
发文量
2854
审稿时长
1 months
期刊介绍: The Astrophysical Journal is the foremost research journal in the world devoted to recent developments, discoveries, and theories in astronomy and astrophysics.
期刊最新文献
Deflection of Coronal Mass Ejections in Unipolar Ambient Magnetic Fields Hunting Gamma-Ray-emitting FR0 Radio Galaxies in Wide-field Sky Surveys GTC Follow-up Observations of Very Metal-poor Star Candidates from DESI Mapping Dust Attenuation and the 2175 Å Bump at Kiloparsec Scales in Nearby Galaxies Identification of 1RXS J165424.6-433758 as a Polar Cataclysmic Variable
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1